Normalized defining polynomial
\( x^{12} - 4 x^{11} + 130 x^{10} - 416 x^{9} + 6567 x^{8} - 16420 x^{7} + 155274 x^{6} - 285164 x^{5} + 1713002 x^{4} - 2100652 x^{3} + 10909864 x^{2} - 7513800 x + 31017889 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87726396011200183795712=2^{33}\cdot 7^{8}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1232=2^{4}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1232}(1,·)$, $\chi_{1232}(197,·)$, $\chi_{1232}(529,·)$, $\chi_{1232}(617,·)$, $\chi_{1232}(109,·)$, $\chi_{1232}(813,·)$, $\chi_{1232}(177,·)$, $\chi_{1232}(725,·)$, $\chi_{1232}(793,·)$, $\chi_{1232}(1145,·)$, $\chi_{1232}(989,·)$, $\chi_{1232}(373,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} - \frac{5}{11} a^{3} + \frac{2}{11} a^{2} - \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{7} + \frac{4}{11} a^{5} + \frac{3}{11} a^{3} + \frac{4}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{8} - \frac{3}{11} a^{5} + \frac{4}{11} a^{4} - \frac{2}{11} a^{3} - \frac{4}{11} a^{2} - \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{9} - \frac{2}{11} a^{5} + \frac{3}{11} a^{3} + \frac{2}{11} a^{2} - \frac{5}{11} a + \frac{3}{11}$, $\frac{1}{28670653099} a^{10} + \frac{638354004}{28670653099} a^{9} - \frac{669756537}{28670653099} a^{8} + \frac{796553822}{28670653099} a^{7} - \frac{1268776165}{28670653099} a^{6} - \frac{6575003636}{28670653099} a^{5} + \frac{13825521669}{28670653099} a^{4} + \frac{12780364825}{28670653099} a^{3} - \frac{1823769778}{28670653099} a^{2} - \frac{7171093034}{28670653099} a + \frac{7442620925}{28670653099}$, $\frac{1}{2953023437666142420283} a^{11} - \frac{21019776408}{2953023437666142420283} a^{10} - \frac{57234305295853836056}{2953023437666142420283} a^{9} + \frac{40346598622658689996}{2953023437666142420283} a^{8} - \frac{88922581774246982544}{2953023437666142420283} a^{7} - \frac{40784669442460789122}{2953023437666142420283} a^{6} + \frac{1055642833476005573973}{2953023437666142420283} a^{5} - \frac{406172383954321136045}{2953023437666142420283} a^{4} - \frac{536365925249787643400}{2953023437666142420283} a^{3} + \frac{1464430792608602872333}{2953023437666142420283} a^{2} + \frac{627743772819920506826}{2953023437666142420283} a - \frac{211326712827821318015}{2953023437666142420283}$
Class group and class number
$C_{3}\times C_{4710}$, which has order $14130$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.150027194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), 4.0.247808.2, 6.6.1229312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.33.374 | $x^{12} + 28 x^{10} - 6 x^{8} + 40 x^{6} - 56 x^{4} - 32 x^{2} - 56$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $11$ | 11.12.6.2 | $x^{12} + 14641 x^{4} - 322102 x^{2} + 14172488$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |