Normalized defining polynomial
\( x^{12} - 4 x^{11} + 88 x^{10} - 528 x^{9} + 1848 x^{8} - 14652 x^{7} + 145860 x^{6} - 897336 x^{5} + 5076852 x^{4} - 19653392 x^{3} + 49941848 x^{2} - 102293600 x + 136284024 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86063856338705521500898983936=2^{18}\cdot 3^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $257.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{42} a^{7} - \frac{1}{7} a^{6} - \frac{3}{14} a^{5} - \frac{5}{21} a^{4} - \frac{3}{7} a^{3} + \frac{5}{21} a - \frac{2}{7}$, $\frac{1}{84} a^{8} + \frac{3}{14} a^{6} + \frac{5}{21} a^{5} + \frac{1}{14} a^{4} - \frac{2}{7} a^{3} - \frac{8}{21} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{84} a^{9} + \frac{1}{42} a^{6} - \frac{1}{7} a^{4} + \frac{10}{21} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7}$, $\frac{1}{84} a^{10} + \frac{1}{7} a^{6} + \frac{1}{14} a^{5} + \frac{3}{14} a^{4} + \frac{1}{3} a + \frac{2}{7}$, $\frac{1}{21753445813456454143547058067524} a^{11} - \frac{61486830408669675750391995037}{10876722906728227071773529033762} a^{10} + \frac{3301695170618477480434581751}{1553817558104032438824789861966} a^{9} + \frac{63207956768607941882121580885}{10876722906728227071773529033762} a^{8} + \frac{71804085227713261720092572963}{10876722906728227071773529033762} a^{7} + \frac{1208410691192502143529774105160}{5438361453364113535886764516881} a^{6} + \frac{870057041197709710263787710631}{5438361453364113535886764516881} a^{5} + \frac{164728168508437990347835581745}{1553817558104032438824789861966} a^{4} - \frac{2425061610944913974951600292196}{5438361453364113535886764516881} a^{3} - \frac{719136253636448239646985884246}{1812787151121371178628921505627} a^{2} + \frac{621939433410051863154398538113}{5438361453364113535886764516881} a + \frac{679676627982849938046953569842}{1812787151121371178628921505627}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7036301978.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.59 | $x^{12} - 2 x^{11} + 6 x^{10} + 4 x^{9} + 6 x^{8} + 12 x^{7} - 4 x^{6} - 8 x^{3} + 16 x^{2} - 8$ | $4$ | $3$ | $18$ | $A_4$ | $[2, 2]^{3}$ |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.11.18.1 | $x^{11} + 66 x^{8} + 11$ | $11$ | $1$ | $18$ | $C_{11}:C_5$ | $[9/5]_{5}$ |