Normalized defining polynomial
\( x^{12} - x^{11} + 15 x^{10} - 15 x^{9} + 211 x^{8} - 780 x^{7} + 3839 x^{6} - 13190 x^{5} + 45121 x^{4} - 106605 x^{3} + 202860 x^{2} - 230256 x + 136161 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8491781520500000000=2^{8}\cdot 5^{9}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{369} a^{10} + \frac{17}{369} a^{9} - \frac{16}{123} a^{8} - \frac{47}{123} a^{7} - \frac{113}{369} a^{6} + \frac{46}{123} a^{5} + \frac{50}{369} a^{4} - \frac{113}{369} a^{3} - \frac{86}{369} a^{2} - \frac{4}{41} a$, $\frac{1}{309895687956794974039557} a^{11} - \frac{267746513838348932536}{309895687956794974039557} a^{10} - \frac{1239658922905206287302}{34432854217421663782173} a^{9} - \frac{48407450769233620351358}{103298562652264991346519} a^{8} - \frac{35773621829249685503234}{309895687956794974039557} a^{7} - \frac{2803283745134023102661}{11477618072473887927391} a^{6} - \frac{63017524658500616344054}{309895687956794974039557} a^{5} - \frac{104313357037638313385996}{309895687956794974039557} a^{4} - \frac{10415179159839952075295}{309895687956794974039557} a^{3} - \frac{19834795281145810511152}{103298562652264991346519} a^{2} - \frac{6989741927055922410628}{34432854217421663782173} a - \frac{26275094041882275012}{279941904206680193351}$
Class group and class number
$C_{4}\times C_{12}$, which has order $48$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{717347590328656391}{34432854217421663782173} a^{11} + \frac{2598119664056560157}{103298562652264991346519} a^{10} - \frac{25520972637141392753}{103298562652264991346519} a^{9} + \frac{13172311310179129430}{34432854217421663782173} a^{8} - \frac{43294501387936117262}{11477618072473887927391} a^{7} + \frac{1719635678407357396079}{103298562652264991346519} a^{6} - \frac{845024267669564280046}{11477618072473887927391} a^{5} + \frac{24892672800359094032698}{103298562652264991346519} a^{4} - \frac{86585255018123708537971}{103298562652264991346519} a^{3} + \frac{193650205446856979756102}{103298562652264991346519} a^{2} - \frac{100432957344368510026240}{34432854217421663782173} a + \frac{758097512112100041514}{279941904206680193351} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3242.18396587 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.7220.1 x3, \(\Q(\zeta_{5})\), 6.6.260642000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $19$ | 19.6.4.1 | $x^{6} + 57 x^{3} + 1444$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 19.6.4.1 | $x^{6} + 57 x^{3} + 1444$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |