Normalized defining polynomial
\( x^{12} - 6 x^{11} + 93 x^{10} - 410 x^{9} + 3372 x^{8} - 11094 x^{7} + 60185 x^{6} - 143382 x^{5} + 553824 x^{4} - 880834 x^{3} + 2459025 x^{2} - 2040774 x + 5366971 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(843466573910016000000=2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(131,·)$, $\chi_{840}(289,·)$, $\chi_{840}(361,·)$, $\chi_{840}(299,·)$, $\chi_{840}(529,·)$, $\chi_{840}(419,·)$, $\chi_{840}(251,·)$, $\chi_{840}(59,·)$, $\chi_{840}(169,·)$, $\chi_{840}(121,·)$, $\chi_{840}(731,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{6} + \frac{1}{3} a^{3} - \frac{1}{6}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{36} a^{8} + \frac{1}{18} a^{7} + \frac{1}{18} a^{6} + \frac{1}{18} a^{5} + \frac{1}{36} a^{4} - \frac{1}{18} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{17}{36}$, $\frac{1}{36} a^{9} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} - \frac{1}{12} a^{5} + \frac{1}{18} a^{4} + \frac{1}{6} a^{2} + \frac{11}{36} a + \frac{1}{9}$, $\frac{1}{3398074884} a^{10} - \frac{5}{3398074884} a^{9} + \frac{4125433}{849518721} a^{8} - \frac{33003449}{1699037442} a^{7} + \frac{249277759}{3398074884} a^{6} + \frac{49536659}{3398074884} a^{5} + \frac{38206766}{849518721} a^{4} + \frac{87086020}{283172907} a^{3} + \frac{1055699105}{3398074884} a^{2} + \frac{487184347}{1132691628} a + \frac{161990189}{1699037442}$, $\frac{1}{480531963571092} a^{11} + \frac{23567}{160177321190364} a^{10} - \frac{688342104382}{120132990892773} a^{9} + \frac{104412951241}{240265981785546} a^{8} + \frac{1539783025997}{160177321190364} a^{7} + \frac{7390858777781}{480531963571092} a^{6} - \frac{8705151980374}{120132990892773} a^{5} - \frac{956744632015}{80088660595182} a^{4} - \frac{12906151149361}{160177321190364} a^{3} + \frac{66669607521755}{160177321190364} a^{2} - \frac{11764263247551}{26696220198394} a + \frac{45192314307949}{240265981785546}$
Class group and class number
$C_{20}\times C_{140}$, which has order $2800$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.88200347693757 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{-42})\), 6.0.29042496000.9, 6.0.232339968.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |