Normalized defining polynomial
\( x^{12} + 110 x^{10} + 4400 x^{8} + 78000 x^{6} + 600000 x^{4} + 1600000 x^{2} + 1000000 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(843466573910016000000=2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(521,·)$, $\chi_{840}(389,·)$, $\chi_{840}(361,·)$, $\chi_{840}(761,·)$, $\chi_{840}(29,·)$, $\chi_{840}(829,·)$, $\chi_{840}(149,·)$, $\chi_{840}(41,·)$, $\chi_{840}(121,·)$, $\chi_{840}(349,·)$, $\chi_{840}(229,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{10} a^{2}$, $\frac{1}{10} a^{3}$, $\frac{1}{100} a^{4}$, $\frac{1}{100} a^{5}$, $\frac{1}{1000} a^{6}$, $\frac{1}{1000} a^{7}$, $\frac{1}{10000} a^{8}$, $\frac{1}{10000} a^{9}$, $\frac{1}{100000} a^{10}$, $\frac{1}{100000} a^{11}$
Class group and class number
$C_{2}\times C_{532}$, which has order $1064$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{1000} a^{6} + \frac{3}{50} a^{4} + \frac{9}{10} a^{2} + 2 \), \( \frac{1}{1000} a^{6} + \frac{3}{50} a^{4} + \frac{9}{10} a^{2} + 3 \), \( \frac{1}{10000} a^{8} + \frac{1}{125} a^{6} + \frac{1}{5} a^{4} + \frac{8}{5} a^{2} + 1 \), \( \frac{1}{100} a^{4} + \frac{2}{5} a^{2} + 1 \), \( \frac{1}{1000} a^{6} + \frac{1}{20} a^{4} + \frac{1}{2} a^{2} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.7987960054707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-30})\), 6.0.1075648000.1, 6.0.4148928000.4, \(\Q(\zeta_{21})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |