Normalized defining polynomial
\( x^{12} - 4 x^{11} + 33 x^{10} - 74 x^{9} + 741 x^{8} - 2188 x^{7} + 12781 x^{6} - 23894 x^{5} + \cdots + 3771709 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(8249526994473458677256192\) \(\medspace = 2^{12}\cdot 17^{9}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(119.23\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 17^{3/4}19^{2/3}\approx 119.22548213043525$ | ||
Ramified primes: | \(2\), \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1292=2^{2}\cdot 17\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1292}(1,·)$, $\chi_{1292}(387,·)$, $\chi_{1292}(1189,·)$, $\chi_{1292}(577,·)$, $\chi_{1292}(999,·)$, $\chi_{1292}(273,·)$, $\chi_{1292}(463,·)$, $\chi_{1292}(115,·)$, $\chi_{1292}(305,·)$, $\chi_{1292}(1075,·)$, $\chi_{1292}(885,·)$, $\chi_{1292}(191,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.78608.1$^{2}$, 12.0.8249526994473458677256192.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{102682786}a^{10}+\frac{10831735}{51341393}a^{9}-\frac{14154689}{102682786}a^{8}+\frac{19045501}{102682786}a^{7}+\frac{4521473}{51341393}a^{6}+\frac{1748393}{51341393}a^{5}-\frac{7813859}{51341393}a^{4}-\frac{79085}{1237142}a^{3}-\frac{20864854}{51341393}a^{2}+\frac{1982867}{102682786}a+\frac{48794511}{102682786}$, $\frac{1}{84\!\cdots\!06}a^{11}-\frac{1836440497}{42\!\cdots\!53}a^{10}-\frac{41\!\cdots\!71}{42\!\cdots\!53}a^{9}-\frac{14\!\cdots\!26}{42\!\cdots\!53}a^{8}+\frac{10\!\cdots\!41}{42\!\cdots\!53}a^{7}-\frac{13\!\cdots\!57}{84\!\cdots\!06}a^{6}+\frac{23\!\cdots\!73}{84\!\cdots\!06}a^{5}+\frac{21\!\cdots\!99}{42\!\cdots\!53}a^{4}-\frac{21\!\cdots\!29}{84\!\cdots\!06}a^{3}+\frac{11\!\cdots\!55}{84\!\cdots\!06}a^{2}+\frac{17\!\cdots\!39}{84\!\cdots\!06}a-\frac{41\!\cdots\!91}{84\!\cdots\!06}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{6}\times C_{654}$, which has order $3924$ (assuming GRH)
Relative class number: $3924$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{24486929828}{42\!\cdots\!53}a^{11}-\frac{2083073814370}{42\!\cdots\!53}a^{10}-\frac{3400845507388}{42\!\cdots\!53}a^{9}-\frac{33351284980948}{42\!\cdots\!53}a^{8}-\frac{92684312599816}{42\!\cdots\!53}a^{7}-\frac{10\!\cdots\!70}{42\!\cdots\!53}a^{6}-\frac{15\!\cdots\!30}{42\!\cdots\!53}a^{5}-\frac{78\!\cdots\!67}{42\!\cdots\!53}a^{4}-\frac{31\!\cdots\!90}{42\!\cdots\!53}a^{3}-\frac{10\!\cdots\!01}{42\!\cdots\!53}a^{2}+\frac{73\!\cdots\!86}{42\!\cdots\!53}a-\frac{76\!\cdots\!04}{42\!\cdots\!53}$, $\frac{418849539456}{42\!\cdots\!53}a^{11}-\frac{11024888809260}{42\!\cdots\!53}a^{10}+\frac{14374290835396}{42\!\cdots\!53}a^{9}-\frac{240625444821807}{42\!\cdots\!53}a^{8}+\frac{216338387020512}{42\!\cdots\!53}a^{7}-\frac{61\!\cdots\!74}{42\!\cdots\!53}a^{6}+\frac{61\!\cdots\!92}{42\!\cdots\!53}a^{5}-\frac{73\!\cdots\!77}{42\!\cdots\!53}a^{4}+\frac{29\!\cdots\!60}{42\!\cdots\!53}a^{3}-\frac{68\!\cdots\!86}{42\!\cdots\!53}a^{2}+\frac{69\!\cdots\!92}{42\!\cdots\!53}a-\frac{48\!\cdots\!64}{42\!\cdots\!53}$, $\frac{4413588659400}{42\!\cdots\!53}a^{11}-\frac{4690134240206}{42\!\cdots\!53}a^{10}+\frac{74051949675360}{42\!\cdots\!53}a^{9}-\frac{52318474598027}{42\!\cdots\!53}a^{8}+\frac{21\!\cdots\!08}{42\!\cdots\!53}a^{7}-\frac{34\!\cdots\!48}{42\!\cdots\!53}a^{6}+\frac{19\!\cdots\!32}{42\!\cdots\!53}a^{5}-\frac{12\!\cdots\!56}{42\!\cdots\!53}a^{4}+\frac{19\!\cdots\!72}{42\!\cdots\!53}a^{3}-\frac{45\!\cdots\!94}{42\!\cdots\!53}a^{2}+\frac{13\!\cdots\!04}{42\!\cdots\!53}a+\frac{89\!\cdots\!31}{42\!\cdots\!53}$, $\frac{3970252190116}{42\!\cdots\!53}a^{11}+\frac{8417828383424}{42\!\cdots\!53}a^{10}+\frac{63078504347352}{42\!\cdots\!53}a^{9}+\frac{221658255204728}{42\!\cdots\!53}a^{8}+\frac{19\!\cdots\!12}{42\!\cdots\!53}a^{7}+\frac{37\!\cdots\!96}{42\!\cdots\!53}a^{6}+\frac{14\!\cdots\!70}{42\!\cdots\!53}a^{5}+\frac{68\!\cdots\!88}{42\!\cdots\!53}a^{4}+\frac{20\!\cdots\!02}{42\!\cdots\!53}a^{3}+\frac{33\!\cdots\!93}{42\!\cdots\!53}a^{2}+\frac{59\!\cdots\!26}{42\!\cdots\!53}a+\frac{52\!\cdots\!40}{42\!\cdots\!53}$, $\frac{1064}{51341393}a^{11}-\frac{632}{51341393}a^{10}+\frac{18776}{51341393}a^{9}-\frac{4598}{51341393}a^{8}+\frac{535688}{51341393}a^{7}-\frac{589636}{51341393}a^{6}+\frac{4999844}{51341393}a^{5}-\frac{1196818}{51341393}a^{4}+\frac{56011844}{51341393}a^{3}-\frac{84044866}{51341393}a^{2}+\frac{312663316}{51341393}a+\frac{454841263}{51341393}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 5500.24745416 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 5500.24745416 \cdot 3924}{2\cdot\sqrt{8249526994473458677256192}}\cr\approx \mathstrut & 0.231177688973 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.361.1, 4.0.78608.1, 6.6.640267073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | R | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(19\) | 19.3.2.2 | $x^{3} + 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
19.3.2.2 | $x^{3} + 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
19.3.2.2 | $x^{3} + 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
19.3.2.2 | $x^{3} + 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |