Normalized defining polynomial
\( x^{12} - 4 x^{11} + 163 x^{10} - 526 x^{9} + 10934 x^{8} - 27772 x^{7} + 382237 x^{6} - 724306 x^{5} + 7349105 x^{4} - 9390924 x^{3} + 76289310 x^{2} - 50833538 x + 338937061 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81701572994888000000000=2^{12}\cdot 5^{9}\cdot 7^{8}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1540=2^{2}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1540}(1409,·)$, $\chi_{1540}(1187,·)$, $\chi_{1540}(1,·)$, $\chi_{1540}(263,·)$, $\chi_{1540}(43,·)$, $\chi_{1540}(1101,·)$, $\chi_{1540}(527,·)$, $\chi_{1540}(529,·)$, $\chi_{1540}(309,·)$, $\chi_{1540}(967,·)$, $\chi_{1540}(1143,·)$, $\chi_{1540}(221,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} - \frac{5}{11} a^{3} + \frac{2}{11} a^{2} - \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{7} + \frac{4}{11} a^{5} + \frac{3}{11} a^{3} + \frac{4}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{8} - \frac{3}{11} a^{5} + \frac{4}{11} a^{4} - \frac{2}{11} a^{3} - \frac{4}{11} a^{2} - \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{319} a^{9} - \frac{1}{319} a^{8} + \frac{6}{319} a^{7} + \frac{10}{319} a^{6} - \frac{39}{319} a^{5} + \frac{131}{319} a^{4} + \frac{138}{319} a^{3} + \frac{59}{319} a^{2} + \frac{115}{319} a + \frac{51}{319}$, $\frac{1}{14189754491} a^{10} - \frac{5977155}{14189754491} a^{9} - \frac{501102572}{14189754491} a^{8} - \frac{86675583}{14189754491} a^{7} - \frac{35653280}{1289977681} a^{6} + \frac{5022846577}{14189754491} a^{5} + \frac{2398918958}{14189754491} a^{4} - \frac{3187211321}{14189754491} a^{3} + \frac{2112699364}{14189754491} a^{2} + \frac{6120288311}{14189754491} a + \frac{4886528748}{14189754491}$, $\frac{1}{601594628326648453739} a^{11} + \frac{91324493}{20744642356091325991} a^{10} + \frac{906251193645034731}{601594628326648453739} a^{9} - \frac{24373240317674253970}{601594628326648453739} a^{8} + \frac{12414856976418211639}{601594628326648453739} a^{7} + \frac{11359651612626925876}{601594628326648453739} a^{6} - \frac{225623838143609596805}{601594628326648453739} a^{5} - \frac{32285264865785426035}{601594628326648453739} a^{4} - \frac{246116889542463527641}{601594628326648453739} a^{3} - \frac{195689321907986896844}{601594628326648453739} a^{2} - \frac{88332413682233332511}{601594628326648453739} a + \frac{75464922916695117500}{601594628326648453739}$
Class group and class number
$C_{2}\times C_{2}\times C_{4034}$, which has order $16136$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.242000.2, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |