Normalized defining polynomial
\( x^{12} - x^{11} + 198 x^{10} - 199 x^{9} + 14544 x^{8} - 14743 x^{7} + 508507 x^{6} - 554959 x^{5} + 9098780 x^{4} - 10507816 x^{3} + 82172540 x^{2} - 73475842 x + 324352981 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81672801965256564453125=5^{9}\cdot 7^{10}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(805=5\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{805}(576,·)$, $\chi_{805}(1,·)$, $\chi_{805}(482,·)$, $\chi_{805}(643,·)$, $\chi_{805}(68,·)$, $\chi_{805}(712,·)$, $\chi_{805}(367,·)$, $\chi_{805}(528,·)$, $\chi_{805}(116,·)$, $\chi_{805}(599,·)$, $\chi_{805}(484,·)$, $\chi_{805}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{14726039} a^{10} + \frac{3615354}{14726039} a^{9} - \frac{5428791}{14726039} a^{8} - \frac{6616262}{14726039} a^{7} - \frac{3323304}{14726039} a^{6} + \frac{2869890}{14726039} a^{5} - \frac{5016410}{14726039} a^{4} - \frac{1800638}{14726039} a^{3} - \frac{3654589}{14726039} a^{2} - \frac{5119214}{14726039} a - \frac{578871}{14726039}$, $\frac{1}{16916673699504424342261128638779} a^{11} + \frac{371390851267667211848760}{16916673699504424342261128638779} a^{10} + \frac{2962314302647762132409023135106}{16916673699504424342261128638779} a^{9} + \frac{3042992314208291145403597281326}{16916673699504424342261128638779} a^{8} - \frac{454284902283822860377511328067}{16916673699504424342261128638779} a^{7} - \frac{7341962953781893507633224078254}{16916673699504424342261128638779} a^{6} + \frac{6082765487427102128448152708475}{16916673699504424342261128638779} a^{5} + \frac{7875559493493821589021827230705}{16916673699504424342261128638779} a^{4} + \frac{380654766771596338834088808525}{16916673699504424342261128638779} a^{3} + \frac{4295492323623615918001256319515}{16916673699504424342261128638779} a^{2} - \frac{6711669495841765283393365335099}{16916673699504424342261128638779} a - \frac{18549553015022176937920}{52155135578989558730959}$
Class group and class number
$C_{5}\times C_{50}\times C_{50}$, which has order $12500$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.3240125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $23$ | 23.12.6.2 | $x^{12} - 6436343 x^{2} + 2220538335$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |