Normalized defining polynomial
\( x^{12} + 348 x^{10} - x^{9} + 42174 x^{8} - 6651 x^{7} + 2316848 x^{6} - 1132947 x^{5} + 60795645 x^{4} - 55917689 x^{3} + 763654464 x^{2} - 700201812 x + 4170430441 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8156423581635695080078125=3^{18}\cdot 5^{9}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2115=3^{2}\cdot 5\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2115}(1,·)$, $\chi_{2115}(706,·)$, $\chi_{2115}(1411,·)$, $\chi_{2115}(422,·)$, $\chi_{2115}(1127,·)$, $\chi_{2115}(1832,·)$, $\chi_{2115}(1129,·)$, $\chi_{2115}(1834,·)$, $\chi_{2115}(424,·)$, $\chi_{2115}(563,·)$, $\chi_{2115}(1268,·)$, $\chi_{2115}(1973,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{19} a^{8} - \frac{4}{19} a^{7} + \frac{2}{19} a^{6} - \frac{1}{19} a^{5} - \frac{7}{19} a^{4} + \frac{3}{19} a^{3} + \frac{5}{19} a^{2} - \frac{3}{19} a$, $\frac{1}{779} a^{9} + \frac{290}{779} a^{7} - \frac{221}{779} a^{6} - \frac{353}{779} a^{5} + \frac{13}{779} a^{4} - \frac{135}{779} a^{3} + \frac{283}{779} a^{2} - \frac{335}{779} a - \frac{13}{41}$, $\frac{1}{779} a^{10} + \frac{3}{779} a^{8} + \frac{148}{779} a^{7} - \frac{148}{779} a^{6} + \frac{300}{779} a^{5} + \frac{316}{779} a^{4} + \frac{201}{779} a^{3} - \frac{212}{779} a^{2} - \frac{165}{779} a$, $\frac{1}{206151888274470543026001775681166354069} a^{11} - \frac{98776138002273753081998835126645930}{206151888274470543026001775681166354069} a^{10} + \frac{61829793171706463150581749205918404}{206151888274470543026001775681166354069} a^{9} + \frac{4529510225495091031810958615168139208}{206151888274470543026001775681166354069} a^{8} + \frac{38536874533757805841127321281565089182}{206151888274470543026001775681166354069} a^{7} + \frac{88641012491150989422265754923200792944}{206151888274470543026001775681166354069} a^{6} - \frac{45594665550383911347190627255287485888}{206151888274470543026001775681166354069} a^{5} + \frac{28489866576515928299037850678859540217}{206151888274470543026001775681166354069} a^{4} + \frac{2505429191956571186657248523038373024}{10850099382866870685579040825324544951} a^{3} - \frac{91539778258608432098197501883679553191}{206151888274470543026001775681166354069} a^{2} - \frac{75436829910627718237990604366053177383}{206151888274470543026001775681166354069} a + \frac{1074771884039343114391583978000719465}{10850099382866870685579040825324544951}$
Class group and class number
$C_{18}\times C_{7578}$, which has order $136404$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.2485125.1, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.74 | $x^{12} - 6 x^{11} - 3 x^{10} - 12 x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} - 9 x^{3} - 9$ | $6$ | $2$ | $18$ | $C_{12}$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $47$ | 47.12.6.2 | $x^{12} - 229345007 x^{2} + 53896076645$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |