Properties

Label 12.0.812479653347328.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{21}\cdot 3^{18}$
Root discriminant $17.48$
Ramified primes $2, 3$
Class number $2$
Class group $[2]$
Galois group $\GL(2,Z/4)$ (as 12T50)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, 21, 44, 63, 84, 98, 60, 15, -2, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^10 - 2*x^9 + 15*x^8 + 60*x^7 + 98*x^6 + 84*x^5 + 63*x^4 + 44*x^3 + 21*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^12 - 3*x^10 - 2*x^9 + 15*x^8 + 60*x^7 + 98*x^6 + 84*x^5 + 63*x^4 + 44*x^3 + 21*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{12} - 3 x^{10} - 2 x^{9} + 15 x^{8} + 60 x^{7} + 98 x^{6} + 84 x^{5} + 63 x^{4} + 44 x^{3} + 21 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(812479653347328=2^{21}\cdot 3^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{21976} a^{11} - \frac{257}{21976} a^{10} + \frac{59}{10988} a^{9} + \frac{659}{5494} a^{8} - \frac{25}{328} a^{7} + \frac{2003}{21976} a^{6} + \frac{177}{536} a^{5} - \frac{7993}{21976} a^{4} - \frac{3}{134} a^{3} + \frac{1405}{5494} a^{2} + \frac{9}{328} a - \frac{1133}{21976}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{5031}{10988} a^{11} + \frac{7371}{10988} a^{10} + \frac{5341}{5494} a^{9} - \frac{2547}{2747} a^{8} - \frac{1161}{164} a^{7} - \frac{187893}{10988} a^{6} - \frac{2871}{268} a^{5} + \frac{62631}{10988} a^{4} - \frac{183}{67} a^{3} + \frac{2223}{2747} a^{2} + \frac{477}{164} a + \frac{8339}{10988} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1003.47214834 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\GL(2,Z/4)$ (as 12T50):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 96
The 14 conjugacy class representatives for $\GL(2,Z/4)$
Character table for $\GL(2,Z/4)$

Intermediate fields

\(\Q(\sqrt{-1}) \), 3.1.324.1 x3, 6.0.419904.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.8.1$x^{4} + 2 x^{2} + 4 x + 10$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.9.1$x^{4} + 6 x^{2} + 2$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
$3$3.12.18.68$x^{12} + 21 x^{11} - 21 x^{10} + 21 x^{9} - 27 x^{7} + 15 x^{6} + 18 x^{5} - 27 x^{4} + 27 x^{3} + 27 x^{2} + 27 x - 36$$6$$2$$18$$C_3 : C_4$$[2]_{2}^{2}$