Normalized defining polynomial
\( x^{12} - 6 x^{11} - 66 x^{10} + 286 x^{9} + 3399 x^{8} - 5676 x^{7} - 99836 x^{6} - 61182 x^{5} + \cdots + 77021757 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(8101827385190641164017995776\)
\(\medspace = 2^{12}\cdot 3^{16}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(211.70\) |
| |
| Galois root discriminant: | $2\cdot 3^{4/3}11^{84/55}\approx 337.04067434395165$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}$, $\frac{1}{6}a^{6}-\frac{1}{2}a^{4}+\frac{1}{3}a^{3}-\frac{1}{2}$, $\frac{1}{6}a^{7}-\frac{1}{6}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{2}a$, $\frac{1}{6}a^{8}+\frac{1}{6}a^{4}-\frac{1}{3}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{18}a^{9}-\frac{1}{18}a^{6}-\frac{1}{6}a^{5}+\frac{1}{6}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{18}a^{10}-\frac{1}{18}a^{7}-\frac{1}{6}a^{5}-\frac{1}{3}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{23\cdots 62}a^{11}+\frac{50\cdots 89}{23\cdots 62}a^{10}-\frac{28\cdots 91}{11\cdots 81}a^{9}+\frac{65\cdots 71}{23\cdots 62}a^{8}-\frac{12\cdots 55}{23\cdots 62}a^{7}+\frac{12\cdots 29}{11\cdots 81}a^{6}-\frac{11\cdots 85}{86\cdots 06}a^{5}+\frac{12\cdots 13}{26\cdots 18}a^{4}-\frac{37\cdots 59}{86\cdots 06}a^{3}-\frac{43\cdots 42}{13\cdots 09}a^{2}+\frac{23\cdots 97}{13\cdots 09}a+\frac{50\cdots 85}{13\cdots 09}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{12}$, which has order $12$ (assuming GRH) |
| |
| Narrow class group: | $C_{12}$, which has order $12$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{67\cdots 17}{39\cdots 27}a^{11}-\frac{68\cdots 73}{26\cdots 18}a^{10}-\frac{65\cdots 85}{78\cdots 54}a^{9}+\frac{65\cdots 33}{78\cdots 54}a^{8}+\frac{14\cdots 01}{26\cdots 18}a^{7}-\frac{64\cdots 51}{78\cdots 54}a^{6}-\frac{62\cdots 39}{43\cdots 03}a^{5}+\frac{59\cdots 42}{43\cdots 03}a^{4}+\frac{35\cdots 87}{86\cdots 06}a^{3}+\frac{11\cdots 42}{43\cdots 03}a^{2}-\frac{42\cdots 87}{43\cdots 03}a+\frac{64\cdots 95}{86\cdots 06}$, $\frac{10\cdots 24}{13\cdots 09}a^{11}-\frac{59\cdots 03}{78\cdots 54}a^{10}-\frac{25\cdots 55}{78\cdots 54}a^{9}+\frac{10\cdots 21}{26\cdots 18}a^{8}+\frac{57\cdots 55}{39\cdots 27}a^{7}-\frac{51\cdots 60}{39\cdots 27}a^{6}-\frac{33\cdots 53}{86\cdots 06}a^{5}+\frac{19\cdots 85}{86\cdots 06}a^{4}+\frac{71\cdots 71}{86\cdots 06}a^{3}-\frac{22\cdots 51}{43\cdots 03}a^{2}+\frac{69\cdots 99}{86\cdots 06}a-\frac{14\cdots 22}{43\cdots 03}$, $\frac{48\cdots 79}{11\cdots 81}a^{11}-\frac{98\cdots 47}{23\cdots 62}a^{10}-\frac{69\cdots 29}{23\cdots 62}a^{9}-\frac{66\cdots 07}{23\cdots 62}a^{8}+\frac{29\cdots 03}{23\cdots 62}a^{7}+\frac{46\cdots 52}{11\cdots 81}a^{6}-\frac{94\cdots 33}{43\cdots 03}a^{5}-\frac{34\cdots 33}{26\cdots 18}a^{4}+\frac{22\cdots 69}{26\cdots 18}a^{3}+\frac{10\cdots 82}{13\cdots 09}a^{2}+\frac{26\cdots 61}{13\cdots 09}a-\frac{83\cdots 57}{13\cdots 09}$, $\frac{92\cdots 96}{43\cdots 03}a^{11}-\frac{49\cdots 33}{78\cdots 54}a^{10}-\frac{48\cdots 45}{39\cdots 27}a^{9}+\frac{10\cdots 66}{13\cdots 09}a^{8}+\frac{20\cdots 85}{39\cdots 27}a^{7}+\frac{46\cdots 37}{39\cdots 27}a^{6}-\frac{13\cdots 81}{13\cdots 09}a^{5}-\frac{45\cdots 41}{13\cdots 09}a^{4}+\frac{14\cdots 38}{43\cdots 03}a^{3}+\frac{28\cdots 13}{86\cdots 06}a^{2}+\frac{12\cdots 26}{43\cdots 03}a-\frac{14\cdots 65}{86\cdots 06}$, $\frac{31\cdots 73}{13\cdots 09}a^{11}+\frac{19\cdots 43}{39\cdots 27}a^{10}-\frac{57\cdots 17}{39\cdots 27}a^{9}-\frac{92\cdots 91}{13\cdots 09}a^{8}+\frac{12\cdots 94}{39\cdots 27}a^{7}+\frac{20\cdots 07}{78\cdots 54}a^{6}-\frac{11\cdots 86}{13\cdots 09}a^{5}-\frac{11\cdots 25}{26\cdots 18}a^{4}-\frac{77\cdots 56}{43\cdots 03}a^{3}+\frac{71\cdots 29}{43\cdots 03}a^{2}+\frac{35\cdots 49}{43\cdots 03}a-\frac{15\cdots 13}{86\cdots 06}$
|
| |
| Regulator: | \( 506074219.899 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 506074219.899 \cdot 12}{2\cdot\sqrt{8101827385190641164017995776}}\cr\approx \mathstrut & 2.07564549810 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | 11.3.6251410019437223120384256.4, 11.3.6251410019437223120384256.2 |
| Minimal sibling: | 11.3.6251410019437223120384256.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.11.0.1}{11} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.11.0.1}{11} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a1.2 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ |
| 2.3.2.6a1.2 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ | |
|
\(3\)
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ |
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |