Normalized defining polynomial
\( x^{12} - 2 x^{11} + 265 x^{10} - 436 x^{9} + 30354 x^{8} - 40216 x^{7} + 1919630 x^{6} - 1949106 x^{5} + 70585208 x^{4} - 49564380 x^{3} + 1429811640 x^{2} - 529942832 x + 12452899201 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7991252743075419172110336=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3864=2^{3}\cdot 3\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3864}(2945,·)$, $\chi_{3864}(2437,·)$, $\chi_{3864}(1885,·)$, $\chi_{3864}(1,·)$, $\chi_{3864}(2209,·)$, $\chi_{3864}(781,·)$, $\chi_{3864}(1517,·)$, $\chi_{3864}(3313,·)$, $\chi_{3864}(2393,·)$, $\chi_{3864}(185,·)$, $\chi_{3864}(2621,·)$, $\chi_{3864}(965,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{14105903584293276857807066621637637} a^{11} - \frac{6863976047878900126586925554663280}{14105903584293276857807066621637637} a^{10} - \frac{64818270185585467074783894794671}{169950645593894901901289959296839} a^{9} + \frac{4784162706128434298904953944419702}{14105903584293276857807066621637637} a^{8} + \frac{4655031972725876852489980333253515}{14105903584293276857807066621637637} a^{7} + \frac{4682092958829040479603703900389623}{14105903584293276857807066621637637} a^{6} - \frac{167582147654616986808273437535995}{1085069506484098219831312817049049} a^{5} - \frac{2044114408120355201243683048702610}{14105903584293276857807066621637637} a^{4} - \frac{2962710205750324356124071079284849}{14105903584293276857807066621637637} a^{3} - \frac{3033399614334926962539583335147323}{14105903584293276857807066621637637} a^{2} + \frac{1958379922906467169972920290418540}{14105903584293276857807066621637637} a + \frac{92210772632851886967315068060306}{328044269402169229251327130735759}$
Class group and class number
$C_{10}\times C_{17640}$, which has order $176400$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.7987960054707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-46}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-966}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-46})\), 6.0.14957039104.1, \(\Q(\zeta_{21})^+\), 6.0.2826880390656.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $23$ | 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |