Normalized defining polynomial
\( x^{12} - x^{11} + 176 x^{10} - 241 x^{9} + 13764 x^{8} - 20921 x^{7} + 610782 x^{6} - 868596 x^{5} + \cdots + 1423267621 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(7787035719905674198640625\) \(\medspace = 3^{6}\cdot 5^{6}\cdot 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(118.65\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{1/2}7^{2/3}17^{3/4}\approx 118.65362581134335$ | ||
Ramified primes: | \(3\), \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1785=3\cdot 5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1785}(256,·)$, $\chi_{1785}(1,·)$, $\chi_{1785}(1619,·)$, $\chi_{1785}(781,·)$, $\chi_{1785}(526,·)$, $\chi_{1785}(16,·)$, $\chi_{1785}(914,·)$, $\chi_{1785}(659,·)$, $\chi_{1785}(149,·)$, $\chi_{1785}(599,·)$, $\chi_{1785}(344,·)$, $\chi_{1785}(1276,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.1105425.1$^{2}$, 12.0.7787035719905674198640625.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{94}a^{9}+\frac{35}{94}a^{8}+\frac{35}{94}a^{7}-\frac{23}{94}a^{6}-\frac{14}{47}a^{5}+\frac{23}{94}a^{4}-\frac{15}{94}a^{3}+\frac{27}{94}a^{2}-\frac{43}{94}a+\frac{25}{94}$, $\frac{1}{94}a^{10}+\frac{16}{47}a^{8}-\frac{13}{47}a^{7}+\frac{25}{94}a^{6}-\frac{31}{94}a^{5}+\frac{13}{47}a^{4}-\frac{6}{47}a^{3}+\frac{23}{47}a^{2}+\frac{13}{47}a-\frac{29}{94}$, $\frac{1}{21\!\cdots\!94}a^{11}-\frac{12\!\cdots\!36}{10\!\cdots\!47}a^{10}+\frac{31\!\cdots\!82}{10\!\cdots\!47}a^{9}-\frac{50\!\cdots\!91}{10\!\cdots\!47}a^{8}+\frac{64\!\cdots\!79}{21\!\cdots\!94}a^{7}-\frac{45\!\cdots\!41}{21\!\cdots\!94}a^{6}-\frac{25\!\cdots\!65}{10\!\cdots\!47}a^{5}+\frac{31\!\cdots\!52}{10\!\cdots\!47}a^{4}-\frac{23\!\cdots\!89}{10\!\cdots\!47}a^{3}+\frac{33\!\cdots\!97}{10\!\cdots\!47}a^{2}+\frac{61\!\cdots\!49}{21\!\cdots\!94}a+\frac{11\!\cdots\!95}{24\!\cdots\!29}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{7466}$, which has order $14932$ (assuming GRH)
Relative class number: $14932$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{50\!\cdots\!95}{22\!\cdots\!01}a^{11}+\frac{51\!\cdots\!59}{22\!\cdots\!01}a^{10}+\frac{10\!\cdots\!48}{22\!\cdots\!01}a^{9}+\frac{65\!\cdots\!36}{22\!\cdots\!01}a^{8}+\frac{78\!\cdots\!31}{22\!\cdots\!01}a^{7}+\frac{34\!\cdots\!58}{22\!\cdots\!01}a^{6}+\frac{29\!\cdots\!13}{22\!\cdots\!01}a^{5}+\frac{99\!\cdots\!01}{22\!\cdots\!01}a^{4}+\frac{57\!\cdots\!24}{22\!\cdots\!01}a^{3}+\frac{16\!\cdots\!72}{22\!\cdots\!01}a^{2}+\frac{48\!\cdots\!78}{22\!\cdots\!01}a+\frac{25\!\cdots\!52}{52\!\cdots\!07}$, $\frac{50\!\cdots\!95}{22\!\cdots\!01}a^{11}+\frac{51\!\cdots\!59}{22\!\cdots\!01}a^{10}+\frac{10\!\cdots\!48}{22\!\cdots\!01}a^{9}+\frac{65\!\cdots\!36}{22\!\cdots\!01}a^{8}+\frac{78\!\cdots\!31}{22\!\cdots\!01}a^{7}+\frac{34\!\cdots\!58}{22\!\cdots\!01}a^{6}+\frac{29\!\cdots\!13}{22\!\cdots\!01}a^{5}+\frac{99\!\cdots\!01}{22\!\cdots\!01}a^{4}+\frac{57\!\cdots\!24}{22\!\cdots\!01}a^{3}+\frac{16\!\cdots\!72}{22\!\cdots\!01}a^{2}+\frac{48\!\cdots\!78}{22\!\cdots\!01}a+\frac{30\!\cdots\!59}{52\!\cdots\!07}$, $\frac{49\!\cdots\!07}{10\!\cdots\!47}a^{11}-\frac{12\!\cdots\!41}{10\!\cdots\!47}a^{10}+\frac{48\!\cdots\!68}{10\!\cdots\!47}a^{9}-\frac{17\!\cdots\!30}{10\!\cdots\!47}a^{8}+\frac{31\!\cdots\!94}{10\!\cdots\!47}a^{7}-\frac{10\!\cdots\!93}{10\!\cdots\!47}a^{6}+\frac{13\!\cdots\!43}{10\!\cdots\!47}a^{5}-\frac{33\!\cdots\!68}{10\!\cdots\!47}a^{4}+\frac{27\!\cdots\!81}{10\!\cdots\!47}a^{3}-\frac{57\!\cdots\!72}{10\!\cdots\!47}a^{2}+\frac{22\!\cdots\!89}{10\!\cdots\!47}a-\frac{94\!\cdots\!64}{24\!\cdots\!29}$, $\frac{94\!\cdots\!73}{10\!\cdots\!47}a^{11}-\frac{18\!\cdots\!37}{10\!\cdots\!47}a^{10}+\frac{29\!\cdots\!74}{22\!\cdots\!01}a^{9}-\frac{27\!\cdots\!62}{10\!\cdots\!47}a^{8}+\frac{10\!\cdots\!01}{10\!\cdots\!47}a^{7}-\frac{17\!\cdots\!58}{10\!\cdots\!47}a^{6}+\frac{47\!\cdots\!55}{10\!\cdots\!47}a^{5}-\frac{57\!\cdots\!92}{10\!\cdots\!47}a^{4}+\frac{11\!\cdots\!36}{10\!\cdots\!47}a^{3}-\frac{97\!\cdots\!73}{10\!\cdots\!47}a^{2}+\frac{10\!\cdots\!12}{10\!\cdots\!47}a-\frac{14\!\cdots\!50}{24\!\cdots\!29}$, $\frac{15\!\cdots\!76}{10\!\cdots\!47}a^{11}+\frac{23\!\cdots\!28}{10\!\cdots\!47}a^{10}+\frac{51\!\cdots\!20}{22\!\cdots\!01}a^{9}+\frac{21\!\cdots\!79}{10\!\cdots\!47}a^{8}+\frac{15\!\cdots\!10}{10\!\cdots\!47}a^{7}+\frac{90\!\cdots\!08}{10\!\cdots\!47}a^{6}+\frac{55\!\cdots\!76}{10\!\cdots\!47}a^{5}+\frac{33\!\cdots\!59}{10\!\cdots\!47}a^{4}+\frac{10\!\cdots\!14}{10\!\cdots\!47}a^{3}+\frac{93\!\cdots\!10}{10\!\cdots\!47}a^{2}+\frac{89\!\cdots\!98}{10\!\cdots\!47}a+\frac{23\!\cdots\!75}{24\!\cdots\!29}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1059.54542703 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1059.54542703 \cdot 14932}{2\cdot\sqrt{7787035719905674198640625}}\cr\approx \mathstrut & 0.174421771774 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.0.1105425.1, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | R | R | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.1.0.1}{1} }^{12}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(5\) | 5.12.6.2 | $x^{12} + 25 x^{8} - 500 x^{6} + 625 x^{4} + 31250$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |