Properties

Label 12.0.7722894400000000.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{12}\cdot 5^{8}\cdot 13^{6}$
Root discriminant $21.09$
Ramified primes $2, 5, 13$
Class number $1$
Class group Trivial
Galois group $D_6$ (as 12T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![36, 168, 392, 232, 85, 54, 74, 4, -5, 12, 2, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 2*x^10 + 12*x^9 - 5*x^8 + 4*x^7 + 74*x^6 + 54*x^5 + 85*x^4 + 232*x^3 + 392*x^2 + 168*x + 36)
 
gp: K = bnfinit(x^12 - 2*x^11 + 2*x^10 + 12*x^9 - 5*x^8 + 4*x^7 + 74*x^6 + 54*x^5 + 85*x^4 + 232*x^3 + 392*x^2 + 168*x + 36, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} + 2 x^{10} + 12 x^{9} - 5 x^{8} + 4 x^{7} + 74 x^{6} + 54 x^{5} + 85 x^{4} + 232 x^{3} + 392 x^{2} + 168 x + 36 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7722894400000000=2^{12}\cdot 5^{8}\cdot 13^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.09$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{3} + \frac{1}{3} a$, $\frac{1}{156} a^{10} + \frac{1}{13} a^{9} - \frac{1}{26} a^{8} - \frac{5}{52} a^{6} + \frac{9}{26} a^{5} - \frac{11}{26} a^{4} - \frac{1}{2} a^{3} + \frac{53}{156} a^{2} - \frac{11}{26} a - \frac{1}{26}$, $\frac{1}{31882968} a^{11} + \frac{110}{173277} a^{10} + \frac{296591}{3985371} a^{9} - \frac{20323}{306567} a^{8} - \frac{2108797}{31882968} a^{7} + \frac{837547}{5313828} a^{6} + \frac{1094335}{3985371} a^{5} - \frac{9707}{1226268} a^{4} - \frac{2207989}{10627656} a^{3} - \frac{7229671}{15941484} a^{2} + \frac{1133183}{5313828} a - \frac{5662}{34063}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{9617}{613134} a^{11} + \frac{955}{26658} a^{10} - \frac{28043}{613134} a^{9} - \frac{101915}{613134} a^{8} + \frac{76187}{613134} a^{7} - \frac{16267}{102189} a^{6} - \frac{324608}{306567} a^{5} - \frac{342001}{613134} a^{4} - \frac{134647}{102189} a^{3} - \frac{1970729}{613134} a^{2} - \frac{185422}{34063} a - \frac{45330}{34063} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5732.52478113 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_6$ (as 12T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 6 conjugacy class representatives for $D_6$
Character table for $D_6$

Intermediate fields

\(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{13}) \), 3.1.1300.1 x3, \(\Q(i, \sqrt{13})\), 6.0.87880000.1, 6.0.6760000.1 x3, 6.2.21970000.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$5$5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$