Normalized defining polynomial
\( x^{12} - 2 x^{11} - 15 x^{10} + 648 x^{9} - 3778 x^{8} - 10924 x^{7} + 198008 x^{6} - 1005130 x^{5} - 799775 x^{4} + 34602694 x^{3} - 81144849 x^{2} - 327865899 x + 1084940875 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(769311739390426167457490080964882209=19^{6}\cdot 23^{6}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $978.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 23, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{303} a^{6} - \frac{1}{303} a^{5} - \frac{8}{303} a^{4} + \frac{13}{303} a^{3} - \frac{30}{101} a^{2} + \frac{2}{101} a - \frac{118}{303}$, $\frac{1}{303} a^{7} - \frac{3}{101} a^{5} + \frac{5}{303} a^{4} - \frac{77}{303} a^{3} - \frac{28}{101} a^{2} - \frac{112}{303} a - \frac{118}{303}$, $\frac{1}{303} a^{8} - \frac{4}{303} a^{5} - \frac{149}{303} a^{4} + \frac{11}{101} a^{3} - \frac{13}{303} a^{2} - \frac{64}{303} a + \frac{50}{101}$, $\frac{1}{303} a^{9} + \frac{50}{101} a^{5} + \frac{1}{303} a^{4} + \frac{13}{101} a^{3} - \frac{121}{303} a^{2} - \frac{43}{101} a + \frac{134}{303}$, $\frac{1}{5151} a^{10} + \frac{8}{5151} a^{9} + \frac{2}{1717} a^{8} - \frac{2}{5151} a^{7} - \frac{4}{5151} a^{6} + \frac{115}{303} a^{5} - \frac{77}{1717} a^{4} - \frac{853}{5151} a^{3} - \frac{1388}{5151} a^{2} - \frac{467}{5151} a - \frac{2345}{5151}$, $\frac{1}{1367520393947239466391} a^{11} - \frac{16567508836257810}{455840131315746488797} a^{10} - \frac{37065964808441050}{26814125371514499341} a^{9} - \frac{104418377957124055}{455840131315746488797} a^{8} + \frac{230638450767058442}{1367520393947239466391} a^{7} - \frac{128444271133026179}{1367520393947239466391} a^{6} - \frac{170664779064848028506}{455840131315746488797} a^{5} - \frac{203325469808501623582}{455840131315746488797} a^{4} - \frac{637513580033938311931}{1367520393947239466391} a^{3} + \frac{186888321835260605300}{1367520393947239466391} a^{2} - \frac{54945147143693820908}{1367520393947239466391} a - \frac{397565692003048886471}{1367520393947239466391}$
Class group and class number
$C_{2}\times C_{2}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 357848365121 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | R | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $23$ | 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $101$ | 101.12.10.1 | $x^{12} - 1010 x^{6} + 7436529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |