Normalized defining polynomial
\( x^{12} - 6 x^{11} + 321 x^{10} - 1550 x^{9} + 38814 x^{8} - 146022 x^{7} + 2195273 x^{6} - 6081186 x^{5} + 60554802 x^{4} - 111141586 x^{3} + 753351309 x^{2} - 698770170 x + 3841091281 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7659539263855005696000000=2^{18}\cdot 3^{18}\cdot 5^{6}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1,·)$, $\chi_{4680}(389,·)$, $\chi_{4680}(1249,·)$, $\chi_{4680}(3821,·)$, $\chi_{4680}(1949,·)$, $\chi_{4680}(4369,·)$, $\chi_{4680}(3121,·)$, $\chi_{4680}(2261,·)$, $\chi_{4680}(1561,·)$, $\chi_{4680}(2809,·)$, $\chi_{4680}(701,·)$, $\chi_{4680}(3509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{26} a^{4} - \frac{1}{13} a^{3} - \frac{1}{26} a^{2} + \frac{1}{13} a + \frac{1}{26}$, $\frac{1}{26} a^{5} - \frac{5}{26} a^{3} + \frac{5}{26} a + \frac{1}{13}$, $\frac{1}{26} a^{6} - \frac{5}{13} a^{3} + \frac{6}{13} a + \frac{5}{26}$, $\frac{1}{26} a^{7} + \frac{3}{13} a^{3} + \frac{1}{13} a^{2} - \frac{1}{26} a + \frac{5}{13}$, $\frac{1}{676} a^{8} - \frac{1}{169} a^{7} + \frac{1}{338} a^{6} + \frac{2}{169} a^{5} - \frac{5}{676} a^{4} - \frac{2}{169} a^{3} + \frac{1}{338} a^{2} + \frac{1}{169} a + \frac{1}{676}$, $\frac{1}{676} a^{9} + \frac{3}{169} a^{7} - \frac{5}{338} a^{6} + \frac{1}{676} a^{5} - \frac{1}{338} a^{4} - \frac{53}{169} a^{3} + \frac{19}{338} a^{2} + \frac{277}{676} a + \frac{27}{169}$, $\frac{1}{44795252324836} a^{10} - \frac{5}{44795252324836} a^{9} - \frac{14974839225}{44795252324836} a^{8} + \frac{29949678465}{22397626162418} a^{7} - \frac{725603188975}{44795252324836} a^{6} + \frac{244267497463}{44795252324836} a^{5} + \frac{504065752465}{44795252324836} a^{4} + \frac{1099404912420}{11198813081209} a^{3} + \frac{21630443659391}{44795252324836} a^{2} + \frac{16976640116925}{44795252324836} a - \frac{42379329215}{99766708964}$, $\frac{1}{173672850687725190932} a^{11} + \frac{1938513}{173672850687725190932} a^{10} + \frac{430011927512241}{6679725026450968882} a^{9} + \frac{24557926036967747}{86836425343862595466} a^{8} - \frac{769081207120729313}{173672850687725190932} a^{7} + \frac{384906566370855831}{173672850687725190932} a^{6} - \frac{1630774464566484139}{86836425343862595466} a^{5} + \frac{819497330132987702}{43418212671931297733} a^{4} + \frac{77685517689378529561}{173672850687725190932} a^{3} - \frac{50207436183310573641}{173672850687725190932} a^{2} + \frac{1498561410693355279}{43418212671931297733} a + \frac{29861875262126657}{193399611010829834}$
Class group and class number
$C_{4}\times C_{45752}$, which has order $183008$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.0008347866989 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-390}) \), \(\Q(\sqrt{-78}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{5}, \sqrt{-78})\), 6.6.820125.1, 6.0.2767587264000.2, 6.0.22140698112.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |