Normalized defining polynomial
\( x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 90 x^{8} - 126 x^{7} + 191 x^{6} - 276 x^{5} - 285 x^{4} + 950 x^{3} - 354 x^{2} - 156 x + 676 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7652750400000000=2^{12}\cdot 3^{14}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{15} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{7}{15} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{4}{15}$, $\frac{1}{15} a^{7} - \frac{1}{5} a^{5} - \frac{4}{15} a^{4} + \frac{2}{15} a + \frac{1}{5}$, $\frac{1}{30} a^{8} + \frac{1}{15} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{6} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{390} a^{9} + \frac{1}{195} a^{8} + \frac{2}{195} a^{7} - \frac{1}{65} a^{6} - \frac{58}{195} a^{5} - \frac{77}{195} a^{4} + \frac{109}{390} a^{3} + \frac{83}{195} a^{2} + \frac{49}{195} a - \frac{1}{3}$, $\frac{1}{1170} a^{10} + \frac{1}{1170} a^{9} + \frac{1}{585} a^{8} + \frac{8}{585} a^{7} - \frac{1}{195} a^{6} + \frac{176}{585} a^{5} + \frac{131}{390} a^{4} + \frac{499}{1170} a^{3} - \frac{112}{585} a^{2} - \frac{49}{585} a - \frac{8}{45}$, $\frac{1}{141570} a^{11} + \frac{1}{2574} a^{10} - \frac{133}{141570} a^{9} + \frac{1033}{141570} a^{8} + \frac{212}{23595} a^{7} - \frac{1681}{70785} a^{6} - \frac{20623}{47190} a^{5} + \frac{66739}{141570} a^{4} - \frac{67043}{141570} a^{3} + \frac{18793}{141570} a^{2} + \frac{7879}{70785} a + \frac{53}{363}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{189}{15730} a^{11} - \frac{289}{4290} a^{10} + \frac{91}{363} a^{9} - \frac{29453}{47190} a^{8} + \frac{6008}{4719} a^{7} - \frac{3668}{1815} a^{6} + \frac{165641}{47190} a^{5} - \frac{46037}{9438} a^{4} + \frac{38}{363} a^{3} + \frac{227609}{47190} a^{2} - \frac{47932}{7865} a + \frac{1062}{605} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15293.392846 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), 3.1.675.1 x3, \(\Q(\zeta_{12})\), 6.0.1366875.1, 6.2.87480000.1 x3, 6.0.29160000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $3$ | 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |