Normalized defining polynomial
\( x^{12} - x^{11} - 3 x^{10} + 2 x^{9} - 16 x^{8} + 42 x^{7} + 31 x^{6} - 126 x^{5} + 545 x^{4} + 310 x^{3} - 2043 x^{2} - 284 x + 5041 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7445055839159169=3^{6}\cdot 7^{8}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(32,·)$, $\chi_{231}(1,·)$, $\chi_{231}(67,·)$, $\chi_{231}(100,·)$, $\chi_{231}(197,·)$, $\chi_{231}(65,·)$, $\chi_{231}(43,·)$, $\chi_{231}(109,·)$, $\chi_{231}(142,·)$, $\chi_{231}(23,·)$, $\chi_{231}(155,·)$, $\chi_{231}(221,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3613} a^{10} - \frac{317}{3613} a^{9} + \frac{313}{3613} a^{8} - \frac{496}{3613} a^{7} - \frac{1117}{3613} a^{6} + \frac{512}{3613} a^{5} - \frac{560}{3613} a^{4} + \frac{1088}{3613} a^{3} + \frac{931}{3613} a^{2} - \frac{1651}{3613} a - \frac{432}{3613}$, $\frac{1}{4595425147802341} a^{11} - \frac{89032330436}{4595425147802341} a^{10} + \frac{1423403121463475}{4595425147802341} a^{9} + \frac{1223338544135600}{4595425147802341} a^{8} - \frac{1181020182443515}{4595425147802341} a^{7} - \frac{651160092337744}{4595425147802341} a^{6} + \frac{537837269660764}{4595425147802341} a^{5} + \frac{294841058923763}{4595425147802341} a^{4} + \frac{1453578054492989}{4595425147802341} a^{3} + \frac{1072277202728848}{4595425147802341} a^{2} + \frac{338699711436188}{4595425147802341} a + \frac{19688489604339}{64724297856371}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{171538516}{1271913962857} a^{11} - \frac{229320242}{1271913962857} a^{10} + \frac{236673978}{1271913962857} a^{9} + \frac{2659675842}{1271913962857} a^{8} + \frac{367897291}{1271913962857} a^{7} + \frac{5099088981}{1271913962857} a^{6} - \frac{12450229249}{1271913962857} a^{5} + \frac{1841497749}{1271913962857} a^{4} - \frac{977179529}{1271913962857} a^{3} - \frac{424329714659}{1271913962857} a^{2} + \frac{2261644935}{1271913962857} a + \frac{20200198995}{17914281167} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1236.8356247 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{33}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-3}, \sqrt{-11})\), 6.0.64827.1, 6.0.3195731.1, 6.6.86284737.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |