Normalized defining polynomial
\( x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{9} + 6 x^{8} - 10 x^{7} + 10 x^{6} - 12 x^{5} + 17 x^{4} - 14 x^{3} + 8 x^{2} - 4 x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(73358639104\)\(\medspace = 2^{18}\cdot 23^{4}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $8.04$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 23$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{79} a^{11} - \frac{14}{79} a^{10} + \frac{12}{79} a^{9} + \frac{12}{79} a^{8} + \frac{20}{79} a^{7} - \frac{13}{79} a^{6} + \frac{8}{79} a^{5} - \frac{29}{79} a^{4} - \frac{30}{79} a^{3} + \frac{30}{79} a^{2} - \frac{36}{79} a + \frac{33}{79}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{3985}{79} a^{11} - \frac{5546}{79} a^{10} + \frac{4607}{79} a^{9} - \frac{5189}{79} a^{8} + \frac{20766}{79} a^{7} - \frac{27236}{79} a^{6} + \frac{23348}{79} a^{5} - \frac{33721}{79} a^{4} + \frac{47298}{79} a^{3} - \frac{27153}{79} a^{2} + \frac{15567}{79} a - \frac{6587}{79} \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 3.42242551816 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times S_4$ (as 12T23):
A solvable group of order 48 |
The 10 conjugacy class representatives for $C_2 \times S_4$ |
Character table for $C_2 \times S_4$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 3.1.23.1, 6.0.33856.1, 6.0.33856.2, 6.2.33856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 6 siblings: | 6.2.778688.4, 6.0.33856.1 |
Degree 8 siblings: | 8.0.8667136.1, 8.4.4584914944.1 |
Degree 12 siblings: | 12.2.1687248699392.2, 12.0.606355001344.2, 12.4.38806720086016.2, 12.0.38806720086016.1, 12.0.38806720086016.3 |
Degree 16 sibling: | Deg 16 |
Degree 24 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.12.18.51 | $x^{12} + 10 x^{11} + 16 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} - 8 x^{6} - 8 x^{5} + 4 x^{4} - 8 x^{3} + 16 x + 8$ | $4$ | $3$ | $18$ | $A_4 \times C_2$ | $[2, 2, 2]^{3}$ |
$23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |