Normalized defining polynomial
\( x^{12} - x^{11} + 338 x^{10} - 106 x^{9} + 46713 x^{8} + 9178 x^{7} + 3370404 x^{6} + 1585644 x^{5} + 134261761 x^{4} + 62972433 x^{3} + 2825933888 x^{2} + 799850077 x + 24768500401 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7284706360423786423828125=3^{6}\cdot 5^{9}\cdot 7^{8}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3255=3\cdot 5\cdot 7\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3255}(1024,·)$, $\chi_{3255}(1,·)$, $\chi_{3255}(1954,·)$, $\chi_{3255}(743,·)$, $\chi_{3255}(92,·)$, $\chi_{3255}(557,·)$, $\chi_{3255}(2417,·)$, $\chi_{3255}(466,·)$, $\chi_{3255}(2419,·)$, $\chi_{3255}(2326,·)$, $\chi_{3255}(1208,·)$, $\chi_{3255}(3068,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{599} a^{9} + \frac{69}{599} a^{8} - \frac{57}{599} a^{7} + \frac{240}{599} a^{6} + \frac{179}{599} a^{5} + \frac{54}{599} a^{4} - \frac{191}{599} a^{3} - \frac{171}{599} a^{2} - \frac{258}{599} a + \frac{246}{599}$, $\frac{1}{599} a^{10} - \frac{26}{599} a^{8} - \frac{20}{599} a^{7} - \frac{208}{599} a^{6} + \frac{282}{599} a^{5} + \frac{276}{599} a^{4} - \frac{170}{599} a^{3} + \frac{160}{599} a^{2} + \frac{78}{599} a - \frac{202}{599}$, $\frac{1}{204875788627772913104149899141820651409} a^{11} - \frac{127498142261895330772002444683301331}{204875788627772913104149899141820651409} a^{10} + \frac{123419684022748107393574831723220066}{204875788627772913104149899141820651409} a^{9} - \frac{7405227090868959137452964141884952092}{204875788627772913104149899141820651409} a^{8} - \frac{2293261308633544703057773819991687092}{204875788627772913104149899141820651409} a^{7} - \frac{25717183859670915346712854390591946380}{204875788627772913104149899141820651409} a^{6} - \frac{19508364428734195625864061804005605866}{204875788627772913104149899141820651409} a^{5} + \frac{26030420619256374031010108838808940364}{204875788627772913104149899141820651409} a^{4} - \frac{70860648800182324409938929721338424346}{204875788627772913104149899141820651409} a^{3} - \frac{31500972895022768275194952876766821788}{204875788627772913104149899141820651409} a^{2} - \frac{20671570181600905628648843879125929683}{204875788627772913104149899141820651409} a - \frac{10241186799819252466529672706883023146}{204875788627772913104149899141820651409}$
Class group and class number
$C_{2}\times C_{2}\times C_{25012}$, which has order $100048$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.1081125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |