Normalized defining polynomial
\( x^{12} - x^{11} + 52 x^{10} + 112 x^{9} + 1234 x^{8} + 1884 x^{7} - 6287 x^{6} - 70 x^{5} + \cdots + 1944923 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(727070128175028950803097\) \(\medspace = 17^{9}\cdot 19^{10}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(97.38\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $17^{3/4}19^{5/6}\approx 97.37886130268147$ | ||
Ramified primes: | \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(323=17\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{323}(1,·)$, $\chi_{323}(259,·)$, $\chi_{323}(132,·)$, $\chi_{323}(293,·)$, $\chi_{323}(273,·)$, $\chi_{323}(239,·)$, $\chi_{323}(208,·)$, $\chi_{323}(305,·)$, $\chi_{323}(183,·)$, $\chi_{323}(217,·)$, $\chi_{323}(220,·)$, $\chi_{323}(254,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.1773593.2$^{2}$, 12.0.727070128175028950803097.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{956}a^{10}-\frac{59}{478}a^{9}+\frac{65}{478}a^{8}-\frac{79}{956}a^{7}+\frac{173}{956}a^{6}-\frac{263}{956}a^{5}-\frac{373}{956}a^{4}-\frac{9}{239}a^{3}-\frac{315}{956}a^{2}-\frac{403}{956}a+\frac{35}{478}$, $\frac{1}{75\!\cdots\!28}a^{11}+\frac{14\!\cdots\!87}{37\!\cdots\!14}a^{10}-\frac{23\!\cdots\!23}{37\!\cdots\!14}a^{9}+\frac{62\!\cdots\!21}{75\!\cdots\!28}a^{8}-\frac{99\!\cdots\!57}{75\!\cdots\!28}a^{7}-\frac{17\!\cdots\!29}{75\!\cdots\!28}a^{6}+\frac{52\!\cdots\!69}{75\!\cdots\!28}a^{5}+\frac{13\!\cdots\!95}{37\!\cdots\!14}a^{4}+\frac{24\!\cdots\!87}{75\!\cdots\!28}a^{3}-\frac{24\!\cdots\!77}{75\!\cdots\!28}a^{2}+\frac{28\!\cdots\!98}{18\!\cdots\!57}a+\frac{38\!\cdots\!41}{18\!\cdots\!57}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{10}\times C_{130}$, which has order $1300$ (assuming GRH)
Relative class number: $1300$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{10\!\cdots\!73}{53\!\cdots\!69}a^{11}+\frac{27\!\cdots\!63}{10\!\cdots\!38}a^{10}+\frac{20\!\cdots\!63}{21\!\cdots\!76}a^{9}+\frac{23\!\cdots\!57}{53\!\cdots\!69}a^{8}+\frac{15\!\cdots\!31}{53\!\cdots\!69}a^{7}+\frac{20\!\cdots\!97}{21\!\cdots\!76}a^{6}-\frac{40\!\cdots\!37}{21\!\cdots\!76}a^{5}-\frac{57\!\cdots\!81}{21\!\cdots\!76}a^{4}+\frac{38\!\cdots\!75}{21\!\cdots\!76}a^{3}-\frac{23\!\cdots\!88}{53\!\cdots\!69}a^{2}-\frac{35\!\cdots\!15}{21\!\cdots\!76}a-\frac{27\!\cdots\!31}{21\!\cdots\!76}$, $\frac{11\!\cdots\!57}{21\!\cdots\!76}a^{11}+\frac{35\!\cdots\!18}{53\!\cdots\!69}a^{10}+\frac{30\!\cdots\!63}{10\!\cdots\!38}a^{9}+\frac{27\!\cdots\!73}{21\!\cdots\!76}a^{8}+\frac{17\!\cdots\!07}{21\!\cdots\!76}a^{7}+\frac{58\!\cdots\!47}{21\!\cdots\!76}a^{6}-\frac{10\!\cdots\!87}{21\!\cdots\!76}a^{5}-\frac{82\!\cdots\!97}{10\!\cdots\!38}a^{4}+\frac{10\!\cdots\!25}{21\!\cdots\!76}a^{3}-\frac{27\!\cdots\!01}{21\!\cdots\!76}a^{2}-\frac{25\!\cdots\!89}{53\!\cdots\!69}a+\frac{45\!\cdots\!91}{53\!\cdots\!69}$, $\frac{21\!\cdots\!19}{75\!\cdots\!28}a^{11}+\frac{39\!\cdots\!91}{75\!\cdots\!28}a^{10}+\frac{57\!\cdots\!89}{37\!\cdots\!14}a^{9}+\frac{54\!\cdots\!85}{75\!\cdots\!28}a^{8}+\frac{95\!\cdots\!86}{18\!\cdots\!57}a^{7}+\frac{62\!\cdots\!09}{37\!\cdots\!14}a^{6}+\frac{17\!\cdots\!82}{18\!\cdots\!57}a^{5}-\frac{37\!\cdots\!39}{75\!\cdots\!28}a^{4}+\frac{11\!\cdots\!25}{75\!\cdots\!28}a^{3}+\frac{19\!\cdots\!27}{18\!\cdots\!57}a^{2}+\frac{22\!\cdots\!17}{75\!\cdots\!28}a-\frac{24\!\cdots\!73}{18\!\cdots\!57}$, $\frac{28\!\cdots\!16}{18\!\cdots\!57}a^{11}+\frac{25\!\cdots\!29}{75\!\cdots\!28}a^{10}+\frac{63\!\cdots\!17}{75\!\cdots\!28}a^{9}+\frac{15\!\cdots\!35}{37\!\cdots\!14}a^{8}+\frac{22\!\cdots\!43}{75\!\cdots\!28}a^{7}+\frac{18\!\cdots\!67}{18\!\cdots\!57}a^{6}+\frac{39\!\cdots\!39}{37\!\cdots\!14}a^{5}-\frac{58\!\cdots\!82}{18\!\cdots\!57}a^{4}+\frac{19\!\cdots\!75}{75\!\cdots\!28}a^{3}+\frac{10\!\cdots\!11}{75\!\cdots\!28}a^{2}+\frac{77\!\cdots\!36}{18\!\cdots\!57}a+\frac{62\!\cdots\!43}{75\!\cdots\!28}$, $\frac{16135718640171}{83\!\cdots\!58}a^{11}+\frac{44808272943761}{83\!\cdots\!58}a^{10}+\frac{950536498344083}{83\!\cdots\!58}a^{9}+\frac{46\!\cdots\!97}{83\!\cdots\!58}a^{8}+\frac{17\!\cdots\!42}{41\!\cdots\!29}a^{7}+\frac{11\!\cdots\!69}{83\!\cdots\!58}a^{6}+\frac{18\!\cdots\!33}{83\!\cdots\!58}a^{5}-\frac{19\!\cdots\!31}{41\!\cdots\!29}a^{4}-\frac{20\!\cdots\!25}{41\!\cdots\!29}a^{3}+\frac{12\!\cdots\!54}{41\!\cdots\!29}a^{2}+\frac{38\!\cdots\!82}{41\!\cdots\!29}a+\frac{81\!\cdots\!05}{83\!\cdots\!58}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 5500.24745416 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 5500.24745416 \cdot 1300}{2\cdot\sqrt{727070128175028950803097}}\cr\approx \mathstrut & 0.257980360032 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.361.1, 4.0.1773593.2, 6.6.640267073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{4}$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(19\) | 19.6.5.2 | $x^{6} + 152$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
19.6.5.2 | $x^{6} + 152$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |