Normalized defining polynomial
\( x^{12} - x^{11} + 7 x^{10} - 8 x^{9} + 50 x^{8} + 43 x^{7} + 267 x^{6} + 246 x^{5} + 1546 x^{4} + 30 x^{3} + 360 x^{2} - 150 x + 25 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(71228826095703125=5^{9}\cdot 19^{4}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{2}$, $\frac{1}{15} a^{8} + \frac{1}{15} a^{7} - \frac{1}{15} a^{6} + \frac{1}{5} a^{5} + \frac{1}{15} a^{4} - \frac{1}{5} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{30} a^{9} - \frac{1}{15} a^{7} + \frac{1}{30} a^{6} + \frac{7}{30} a^{5} - \frac{13}{30} a^{4} - \frac{2}{5} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{60} a^{10} - \frac{1}{60} a^{9} - \frac{1}{60} a^{7} - \frac{1}{30} a^{6} - \frac{13}{30} a^{5} + \frac{3}{20} a^{4} - \frac{4}{15} a^{3} + \frac{1}{4} a^{2} + \frac{1}{6} a + \frac{1}{4}$, $\frac{1}{538449217080} a^{11} + \frac{723497481}{89741536180} a^{10} - \frac{2815491431}{538449217080} a^{9} - \frac{2728498811}{179483072360} a^{8} + \frac{11853629169}{179483072360} a^{7} + \frac{256896956}{4487076809} a^{6} - \frac{1088900271}{179483072360} a^{5} + \frac{46391157743}{107689843416} a^{4} + \frac{41265817127}{538449217080} a^{3} - \frac{79135138897}{538449217080} a^{2} - \frac{39166916275}{107689843416} a + \frac{318756373}{107689843416}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{435704577}{179483072360} a^{11} - \frac{17592691}{13461230427} a^{10} + \frac{9476239213}{538449217080} a^{9} - \frac{7118260819}{538449217080} a^{8} + \frac{22311065777}{179483072360} a^{7} + \frac{6460524079}{44870768090} a^{6} + \frac{84112466761}{107689843416} a^{5} + \frac{527056857959}{538449217080} a^{4} + \frac{2409401203333}{538449217080} a^{3} + \frac{404387054141}{179483072360} a^{2} + \frac{117656979233}{35896614472} a + \frac{21377984857}{107689843416} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5327.46417737 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3.C_2$ (as 12T41):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3.C_2$ |
| Character table for $C_2\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 6.6.119355625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | R | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 19.6.4.2 | $x^{6} - 19 x^{3} + 722$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |