Normalized defining polynomial
\( x^{12} + 124 x^{10} + 4898 x^{8} + 66464 x^{6} + 338272 x^{4} + 492032 x^{2} + 123008 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7040553374918085749768192=2^{33}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{124} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{248} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{3968} a^{8} - \frac{3}{992} a^{6} + \frac{3}{64} a^{4} - \frac{3}{8} a^{2} - \frac{1}{8}$, $\frac{1}{3968} a^{9} + \frac{1}{992} a^{7} + \frac{3}{64} a^{5} + \frac{3}{8} a^{3} - \frac{1}{8} a$, $\frac{1}{16006912} a^{10} + \frac{475}{4001728} a^{8} + \frac{3437}{8003456} a^{6} + \frac{597}{16136} a^{4} - \frac{14777}{32272} a^{2} + \frac{1289}{4034}$, $\frac{1}{32013824} a^{11} + \frac{475}{8003456} a^{9} + \frac{3437}{16006912} a^{7} + \frac{597}{32272} a^{5} + \frac{17495}{64544} a^{3} + \frac{1289}{8068} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{212}$, which has order $3392$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34680.608017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times A_4$ (as 12T29):
| A solvable group of order 48 |
| The 16 conjugacy class representatives for $C_4\times A_4$ |
| Character table for $C_4\times A_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.961.1, 6.6.472842752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.3 | $x^{4} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $31$ | 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |