Normalized defining polynomial
\( x^{12} - 4 x^{11} + 2 x^{10} + 71 x^{8} - 60 x^{7} - 166 x^{6} - 468 x^{5} + 234 x^{4} + 2196 x^{3} + 5160 x^{2} + 3408 x + 2417 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7007073538075000832=2^{33}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(208=2^{4}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{208}(1,·)$, $\chi_{208}(3,·)$, $\chi_{208}(131,·)$, $\chi_{208}(81,·)$, $\chi_{208}(9,·)$, $\chi_{208}(107,·)$, $\chi_{208}(113,·)$, $\chi_{208}(35,·)$, $\chi_{208}(139,·)$, $\chi_{208}(105,·)$, $\chi_{208}(185,·)$, $\chi_{208}(27,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1153729} a^{10} + \frac{396553}{1153729} a^{9} + \frac{266483}{1153729} a^{8} + \frac{539753}{1153729} a^{7} + \frac{177240}{1153729} a^{6} - \frac{41257}{1153729} a^{5} + \frac{260463}{1153729} a^{4} - \frac{73795}{1153729} a^{3} - \frac{421126}{1153729} a^{2} - \frac{195107}{1153729} a + \frac{143196}{1153729}$, $\frac{1}{8208570702593} a^{11} - \frac{280959}{8208570702593} a^{10} + \frac{4040345989558}{8208570702593} a^{9} + \frac{1300888140888}{8208570702593} a^{8} - \frac{3039647433810}{8208570702593} a^{7} - \frac{1572800138487}{8208570702593} a^{6} + \frac{2348204073928}{8208570702593} a^{5} - \frac{3645847665209}{8208570702593} a^{4} + \frac{4019313518010}{8208570702593} a^{3} - \frac{1726534139673}{8208570702593} a^{2} + \frac{1180447186716}{8208570702593} a + \frac{2287214734224}{8208570702593}$
Class group and class number
$C_{13}$, which has order $13$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 930.687500645 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.169.1, 4.0.2048.2, 6.6.14623232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.33.344 | $x^{12} + 4 x^{10} + 10 x^{8} - 8 x^{6} + 8 x^{4} + 32 x^{2} + 8$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
| $13$ | 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |