Properties

Label 12.0.69637938597.1
Degree $12$
Signature $[0, 6]$
Discriminant $69637938597$
Root discriminant $8.01$
Ramified primes $3, 19, 733$
Class number $1$
Class group trivial
Galois group 12T208

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 3*x^10 - 2*x^9 + 4*x^6 - 11*x^5 + 17*x^4 - 16*x^3 + 11*x^2 - 5*x + 1)
 
gp: K = bnfinit(x^12 - 2*x^11 + 3*x^10 - 2*x^9 + 4*x^6 - 11*x^5 + 17*x^4 - 16*x^3 + 11*x^2 - 5*x + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, 11, -16, 17, -11, 4, 0, 0, -2, 3, -2, 1]);
 

\( x^{12} - 2 x^{11} + 3 x^{10} - 2 x^{9} + 4 x^{6} - 11 x^{5} + 17 x^{4} - 16 x^{3} + 11 x^{2} - 5 x + 1 \)

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(69637938597\)\(\medspace = 3^{6}\cdot 19^{4}\cdot 733\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $8.01$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $3, 19, 733$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $2$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{11} a^{11} + \frac{4}{11} a^{10} + \frac{5}{11} a^{9} - \frac{5}{11} a^{8} + \frac{3}{11} a^{7} - \frac{4}{11} a^{6} + \frac{2}{11} a^{5} + \frac{1}{11} a^{4} + \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{5}{11} a - \frac{2}{11}$

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( \frac{39}{11} a^{11} - \frac{53}{11} a^{10} + \frac{85}{11} a^{9} - \frac{30}{11} a^{8} - \frac{15}{11} a^{7} - \frac{13}{11} a^{6} + \frac{144}{11} a^{5} - \frac{335}{11} a^{4} + \frac{457}{11} a^{3} - \frac{357}{11} a^{2} + \frac{234}{11} a - \frac{67}{11} \) (order $6$)
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 4.89240598709 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{6}\cdot 4.89240598709 \cdot 1}{6\sqrt{69637938597}}\approx 0.190119864172$

Galois group

12T208:

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 1152
The 44 conjugacy class representatives for [2A_4^2]2=2A4wr2=2wrF_18(6)
Character table for [2A_4^2]2=2A4wr2=2wrF_18(6) is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 6.0.9747.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ R ${\href{/LocalNumberField/5.12.0.1}{12} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/23.12.0.1}{12} }$ ${\href{/LocalNumberField/29.12.0.1}{12} }$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.6.4.3$x^{6} + 95 x^{3} + 2888$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
733Data not computed