Normalized defining polynomial
\( x^{12} - x^{11} + 13 x^{10} - 36 x^{9} + 203 x^{8} + 718 x^{7} + 2114 x^{6} + 4269 x^{5} + 13201 x^{4} + 14773 x^{3} + 16093 x^{2} + 15972 x + 14641 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6860311433439453125=5^{9}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(185=5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{185}(1,·)$, $\chi_{185}(38,·)$, $\chi_{185}(137,·)$, $\chi_{185}(174,·)$, $\chi_{185}(47,·)$, $\chi_{185}(112,·)$, $\chi_{185}(84,·)$, $\chi_{185}(149,·)$, $\chi_{185}(121,·)$, $\chi_{185}(26,·)$, $\chi_{185}(158,·)$, $\chi_{185}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{35327941} a^{9} - \frac{5263512}{35327941} a^{8} - \frac{7788669}{35327941} a^{7} + \frac{15282396}{35327941} a^{6} - \frac{15519851}{35327941} a^{5} - \frac{8653928}{35327941} a^{4} + \frac{11686358}{35327941} a^{3} + \frac{10288950}{35327941} a^{2} + \frac{13172908}{35327941} a + \frac{1552045}{3211631}$, $\frac{1}{388607351} a^{10} - \frac{1}{388607351} a^{9} + \frac{140152014}{388607351} a^{8} - \frac{162427774}{388607351} a^{7} - \frac{98784802}{388607351} a^{6} - \frac{187792371}{388607351} a^{5} + \frac{11865559}{388607351} a^{4} - \frac{172267908}{388607351} a^{3} + \frac{82848349}{388607351} a^{2} + \frac{4641792}{35327941} a + \frac{743736}{3211631}$, $\frac{1}{4274680861} a^{11} - \frac{1}{4274680861} a^{10} + \frac{13}{4274680861} a^{9} + \frac{573900544}{4274680861} a^{8} + \frac{563554920}{4274680861} a^{7} + \frac{978118012}{4274680861} a^{6} - \frac{528364956}{4274680861} a^{5} + \frac{1791996119}{4274680861} a^{4} + \frac{913079201}{4274680861} a^{3} + \frac{6904272}{388607351} a^{2} - \frac{2557158}{35327941} a - \frac{205657}{3211631}$
Class group and class number
$C_{7}\times C_{7}$, which has order $49$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{203}{35327941} a^{11} + \frac{26265}{3211631} a^{6} - \frac{31119434}{35327941} a \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5133.82158211 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.1369.1, \(\Q(\zeta_{5})\), 6.6.234270125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $37$ | 37.12.8.1 | $x^{12} - 111 x^{9} + 4107 x^{6} - 50653 x^{3} + 14993288$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |