Normalized defining polynomial
\( x^{12} - x^{11} + 5 x^{10} - 9 x^{9} + 29 x^{8} - 65 x^{7} + 181 x^{6} + 260 x^{5} + 464 x^{4} + 576 x^{3} + 1280 x^{2} + 1024 x + 4096 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6818265813529681=7^{10}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(119=7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{119}(1,·)$, $\chi_{119}(67,·)$, $\chi_{119}(69,·)$, $\chi_{119}(103,·)$, $\chi_{119}(18,·)$, $\chi_{119}(16,·)$, $\chi_{119}(50,·)$, $\chi_{119}(52,·)$, $\chi_{119}(86,·)$, $\chi_{119}(33,·)$, $\chi_{119}(118,·)$, $\chi_{119}(101,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{724} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{65}{181}$, $\frac{1}{2896} a^{8} - \frac{1}{2896} a^{7} + \frac{1}{16} a^{6} - \frac{5}{16} a^{5} - \frac{7}{16} a^{4} + \frac{3}{16} a^{3} + \frac{1}{16} a^{2} + \frac{65}{724} a + \frac{29}{181}$, $\frac{1}{11584} a^{9} - \frac{1}{11584} a^{8} + \frac{5}{11584} a^{7} - \frac{5}{64} a^{6} + \frac{9}{64} a^{5} - \frac{29}{64} a^{4} + \frac{1}{64} a^{3} + \frac{65}{2896} a^{2} + \frac{29}{724} a + \frac{9}{181}$, $\frac{1}{46336} a^{10} - \frac{1}{46336} a^{9} + \frac{5}{46336} a^{8} - \frac{9}{46336} a^{7} - \frac{55}{256} a^{6} + \frac{35}{256} a^{5} + \frac{1}{256} a^{4} + \frac{65}{11584} a^{3} + \frac{29}{2896} a^{2} + \frac{9}{724} a + \frac{5}{181}$, $\frac{1}{185344} a^{11} - \frac{1}{185344} a^{10} + \frac{5}{185344} a^{9} - \frac{9}{185344} a^{8} + \frac{29}{185344} a^{7} - \frac{221}{1024} a^{6} + \frac{1}{1024} a^{5} + \frac{65}{46336} a^{4} + \frac{29}{11584} a^{3} + \frac{9}{2896} a^{2} + \frac{5}{724} a + \frac{1}{181}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{2896} a^{9} - \frac{1165}{2896} a^{2} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1059.54542703 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-7}, \sqrt{17})\), \(\Q(\zeta_{7})\), 6.0.82572791.1, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $17$ | 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |