Normalized defining polynomial
\( x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 225 x^{8} - 426 x^{7} + 667 x^{6} - 822 x^{5} + 1020 x^{4} + \cdots + 1189 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(6775409390765625\) \(\medspace = 3^{6}\cdot 5^{6}\cdot 29^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(20.86\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}5^{1/2}29^{1/2}\approx 20.85665361461421$ | ||
Ramified primes: | \(3\), \(5\), \(29\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{249527}a^{10}-\frac{5}{249527}a^{9}-\frac{100812}{249527}a^{8}-\frac{95776}{249527}a^{7}-\frac{97172}{249527}a^{6}-\frac{121870}{249527}a^{5}-\frac{111647}{249527}a^{4}+\frac{65155}{249527}a^{3}-\frac{56119}{249527}a^{2}+\frac{19191}{249527}a+\frac{62748}{249527}$, $\frac{1}{498305419}a^{11}+\frac{993}{498305419}a^{10}+\frac{52045341}{498305419}a^{9}-\frac{85734532}{498305419}a^{8}-\frac{227681403}{498305419}a^{7}-\frac{36713992}{498305419}a^{6}-\frac{123983650}{498305419}a^{5}+\frac{193563443}{498305419}a^{4}+\frac{194722611}{498305419}a^{3}-\frac{120116010}{498305419}a^{2}-\frac{206856096}{498305419}a+\frac{243030525}{498305419}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1936}{872689}a^{11}-\frac{10648}{872689}a^{10}+\frac{46826}{872689}a^{9}-\frac{130857}{872689}a^{8}+\frac{267326}{872689}a^{7}-\frac{399511}{872689}a^{6}+\frac{413575}{872689}a^{5}-\frac{287253}{872689}a^{4}+\frac{496099}{872689}a^{3}-\frac{585385}{872689}a^{2}+\frac{48749}{45931}a+\frac{67175}{872689}$, $\frac{175100}{498305419}a^{11}-\frac{1160753}{498305419}a^{10}+\frac{8270855}{498305419}a^{9}-\frac{26929579}{498305419}a^{8}+\frac{77711925}{498305419}a^{7}-\frac{134485292}{498305419}a^{6}+\frac{198607131}{498305419}a^{5}-\frac{185869455}{498305419}a^{4}+\frac{186442882}{498305419}a^{3}-\frac{140811288}{498305419}a^{2}+\frac{301014028}{498305419}a-\frac{89315146}{498305419}$, $\frac{678620}{498305419}a^{11}-\frac{4075894}{498305419}a^{10}+\frac{19411375}{498305419}a^{9}-\frac{56547335}{498305419}a^{8}+\frac{131627998}{498305419}a^{7}-\frac{222541228}{498305419}a^{6}+\frac{281798416}{498305419}a^{5}-\frac{287249240}{498305419}a^{4}+\frac{12045030}{21665453}a^{3}-\frac{318461904}{498305419}a^{2}+\frac{738776827}{498305419}a-\frac{156874968}{498305419}$, $\frac{179274}{498305419}a^{11}-\frac{1183710}{498305419}a^{10}+\frac{5200200}{498305419}a^{9}-\frac{12939454}{498305419}a^{8}+\frac{30699681}{498305419}a^{7}-\frac{35390387}{498305419}a^{6}+\frac{81006922}{498305419}a^{5}-\frac{106847785}{498305419}a^{4}+\frac{249901617}{498305419}a^{3}-\frac{523987503}{498305419}a^{2}+\frac{192748342}{498305419}a-\frac{634984096}{498305419}$, $\frac{1361414}{498305419}a^{11}-\frac{8174745}{498305419}a^{10}+\frac{35752095}{498305419}a^{9}-\frac{99104545}{498305419}a^{8}+\frac{216243752}{498305419}a^{7}-\frac{15042937}{21665453}a^{6}+\frac{445996623}{498305419}a^{5}-\frac{21542470}{21665453}a^{4}+\frac{32501585}{26226601}a^{3}-\frac{521794604}{498305419}a^{2}+\frac{870982549}{498305419}a-\frac{361113467}{498305419}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 217.33692993 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 217.33692993 \cdot 4}{2\cdot\sqrt{6775409390765625}}\cr\approx \mathstrut & 0.32491889151 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_6$ |
Character table for $D_6$ |
Intermediate fields
\(\Q(\sqrt{-87}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-435}) \), 3.1.87.1 x3, \(\Q(\sqrt{5}, \sqrt{-87})\), 6.0.658503.1, 6.2.946125.1 x3, 6.0.82312875.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 6 siblings: | 6.2.946125.1, 6.0.82312875.1 |
Minimal sibling: | 6.2.946125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | ${\href{/padicField/41.1.0.1}{1} }^{12}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(5\) | 5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(29\) | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |