Normalized defining polynomial
\( x^{12} + 221x^{10} + 15470x^{8} + 409513x^{6} + 4884100x^{4} + 26569504x^{2} + 53139008 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(66962824419130954436415488\) \(\medspace = 2^{12}\cdot 13^{10}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(141.96\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 13^{5/6}17^{3/4}\approx 141.9556928155912$ | ||
Ramified primes: | \(2\), \(13\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(884=2^{2}\cdot 13\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{884}(1,·)$, $\chi_{884}(259,·)$, $\chi_{884}(667,·)$, $\chi_{884}(781,·)$, $\chi_{884}(237,·)$, $\chi_{884}(387,·)$, $\chi_{884}(341,·)$, $\chi_{884}(727,·)$, $\chi_{884}(803,·)$, $\chi_{884}(251,·)$, $\chi_{884}(477,·)$, $\chi_{884}(373,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.13284752.4$^{2}$, 12.0.66962824419130954436415488.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{17}a^{4}$, $\frac{1}{17}a^{5}$, $\frac{1}{221}a^{6}$, $\frac{1}{442}a^{7}-\frac{1}{34}a^{5}-\frac{1}{2}a$, $\frac{1}{75140}a^{8}+\frac{1}{884}a^{6}-\frac{1}{170}a^{4}+\frac{1}{4}a^{2}-\frac{2}{5}$, $\frac{1}{150280}a^{9}+\frac{1}{1768}a^{7}-\frac{1}{340}a^{5}+\frac{1}{8}a^{3}+\frac{3}{10}a$, $\frac{1}{183642160}a^{10}-\frac{1}{300560}a^{8}-\frac{341}{415480}a^{6}-\frac{13523}{830960}a^{4}-\frac{319}{940}a^{2}+\frac{116}{235}$, $\frac{1}{367284320}a^{11}-\frac{1}{601120}a^{9}-\frac{341}{830960}a^{7}-\frac{13523}{1661920}a^{5}-\frac{319}{1880}a^{3}-\frac{119}{470}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2308}$, which has order $18464$ (assuming GRH)
Relative class number: $18464$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{81}{7063160}a^{10}+\frac{73}{30056}a^{8}+\frac{16101}{103870}a^{6}+\frac{20853}{6392}a^{4}+\frac{24021}{940}a^{2}+\frac{2912}{47}$, $\frac{61}{14126320}a^{10}+\frac{55}{60112}a^{8}+\frac{24277}{415480}a^{6}+\frac{925}{752}a^{4}+\frac{4529}{470}a^{2}+\frac{1158}{47}$, $\frac{4713}{183642160}a^{10}+\frac{327}{60112}a^{8}+\frac{144557}{415480}a^{6}+\frac{72121}{9776}a^{4}+\frac{27889}{470}a^{2}+\frac{7361}{47}$, $\frac{907}{91821080}a^{10}+\frac{63}{30056}a^{8}+\frac{13969}{103870}a^{6}+\frac{239727}{83096}a^{4}+\frac{22699}{940}a^{2}+\frac{3244}{47}$, $\frac{98}{2295527}a^{10}+\frac{2}{221}a^{8}+\frac{6014}{10387}a^{6}+\frac{7512}{611}a^{4}+\frac{4672}{47}a^{2}+\frac{12171}{47}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3407.79685773 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 3407.79685773 \cdot 18464}{2\cdot\sqrt{66962824419130954436415488}}\cr\approx \mathstrut & 0.236554831320 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.169.1, 4.0.13284752.4, 6.6.140320193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | R | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(13\) | 13.6.5.2 | $x^{6} + 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
13.6.5.2 | $x^{6} + 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |