Normalized defining polynomial
\( x^{12} - 135 x^{6} - 270 x^{5} + 225 x^{4} + 1040 x^{3} + 1080 x^{2} + 480 x + 80 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6643012500000000=2^{8}\cdot 3^{12}\cdot 5^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{88} a^{9} + \frac{1}{4} a^{8} - \frac{5}{11} a^{7} + \frac{4}{11} a^{6} + \frac{2}{11} a^{5} - \frac{1}{11} a^{4} - \frac{15}{88} a^{3} - \frac{4}{11} a^{2} - \frac{3}{88} a + \frac{7}{44}$, $\frac{1}{704} a^{10} - \frac{1}{176} a^{9} + \frac{23}{176} a^{8} - \frac{5}{22} a^{7} - \frac{7}{44} a^{6} + \frac{3}{11} a^{5} - \frac{71}{704} a^{4} + \frac{135}{352} a^{3} + \frac{213}{704} a^{2} - \frac{87}{176} a + \frac{41}{176}$, $\frac{1}{5632} a^{11} + \frac{1}{2816} a^{10} + \frac{1}{1408} a^{9} - \frac{127}{704} a^{8} - \frac{127}{352} a^{7} - \frac{79}{176} a^{6} + \frac{1465}{5632} a^{5} - \frac{615}{1408} a^{4} - \frac{2135}{5632} a^{3} + \frac{433}{2816} a^{2} + \frac{447}{1408} a + \frac{17}{64}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3483}{512} a^{11} + \frac{13635}{2816} a^{10} - \frac{4881}{1408} a^{9} + \frac{1755}{704} a^{8} - \frac{633}{352} a^{7} + \frac{227}{176} a^{6} + \frac{5167071}{5632} a^{5} + \frac{1666629}{1408} a^{4} - \frac{13349889}{5632} a^{3} - \frac{15166845}{2816} a^{2} - \frac{450765}{128} a - \frac{541399}{704} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4454.21449848 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times C_3:S_3.C_2$ (as 12T119):
| A solvable group of order 216 |
| The 18 conjugacy class representatives for $S_3\times C_3:S_3.C_2$ |
| Character table for $S_3\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.12.12.8 | $x^{12} + 21 x^{11} + 81 x^{10} - 78 x^{9} - 63 x^{8} - 99 x^{7} + 117 x^{6} - 54 x^{5} - 54 x^{4} + 81 x^{2} - 81 x + 81$ | $3$ | $4$ | $12$ | 12T119 | $[3/2, 3/2, 3/2]_{2}^{4}$ |
| $5$ | 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |