Properties

Label 12.0.655360000000000.13
Degree $12$
Signature $[0, 6]$
Discriminant $2^{26}\cdot 5^{10}$
Root discriminant $17.17$
Ramified primes $2, 5$
Class number $1$
Class group Trivial
Galois group $S_6\times C_2$ (as 12T219)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 8, 8, -20, 25, -8, -16, 24, -10, 0, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 8*x^10 - 10*x^8 + 24*x^7 - 16*x^6 - 8*x^5 + 25*x^4 - 20*x^3 + 8*x^2 + 8*x + 4)
 
gp: K = bnfinit(x^12 - 4*x^11 + 8*x^10 - 10*x^8 + 24*x^7 - 16*x^6 - 8*x^5 + 25*x^4 - 20*x^3 + 8*x^2 + 8*x + 4, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 8 x^{10} - 10 x^{8} + 24 x^{7} - 16 x^{6} - 8 x^{5} + 25 x^{4} - 20 x^{3} + 8 x^{2} + 8 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(655360000000000=2^{26}\cdot 5^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10792} a^{11} - \frac{827}{10792} a^{10} + \frac{733}{10792} a^{9} + \frac{1093}{10792} a^{8} - \frac{1115}{10792} a^{7} + \frac{349}{10792} a^{6} - \frac{1255}{10792} a^{5} - \frac{3175}{10792} a^{4} + \frac{1021}{2698} a^{3} - \frac{605}{1349} a^{2} - \frac{1079}{2698} a + \frac{377}{2698}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{215}{2698} a^{11} + \frac{543}{1349} a^{10} - \frac{1230}{1349} a^{9} + \frac{540}{1349} a^{8} + \frac{1825}{1349} a^{7} - \frac{7585}{2698} a^{6} + \frac{3385}{1349} a^{5} + \frac{690}{1349} a^{4} - \frac{7955}{2698} a^{3} + \frac{8615}{2698} a^{2} - \frac{1435}{1349} a - \frac{230}{1349} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2815.55796437 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_6\times C_2$ (as 12T219):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1440
The 22 conjugacy class representatives for $S_6\times C_2$
Character table for $S_6\times C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 6.2.6400000.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 30 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.8.18.66$x^{8} + 6 x^{4} + 4 x^{3} + 2$$8$$1$$18$$S_4\times C_2$$[2, 8/3, 8/3]_{3}^{2}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.5.5.3$x^{5} + 15 x + 5$$5$$1$$5$$F_5$$[5/4]_{4}$
5.5.5.3$x^{5} + 15 x + 5$$5$$1$$5$$F_5$$[5/4]_{4}$