Normalized defining polynomial
\( x^{12} - 2 x^{11} + 123 x^{10} - 202 x^{9} + 6739 x^{8} - 8858 x^{7} + 208872 x^{6} - 208260 x^{5} + 3847558 x^{4} - 2612324 x^{3} + 39868309 x^{2} - 13964626 x + 181540151 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(64022047012554352623616=2^{18}\cdot 11^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1144=2^{3}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1144}(1,·)$, $\chi_{1144}(373,·)$, $\chi_{1144}(901,·)$, $\chi_{1144}(705,·)$, $\chi_{1144}(285,·)$, $\chi_{1144}(529,·)$, $\chi_{1144}(725,·)$, $\chi_{1144}(441,·)$, $\chi_{1144}(1057,·)$, $\chi_{1144}(881,·)$, $\chi_{1144}(989,·)$, $\chi_{1144}(549,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{297945219436543339124782981805} a^{11} + \frac{24161468684673536709826438437}{297945219436543339124782981805} a^{10} - \frac{53537025620241268715290146519}{297945219436543339124782981805} a^{9} + \frac{31060625821280211095558771977}{297945219436543339124782981805} a^{8} + \frac{78940997916596405335133763287}{297945219436543339124782981805} a^{7} - \frac{23526010985035354430028148268}{59589043887308667824956596361} a^{6} - \frac{143147879002571211639489266178}{297945219436543339124782981805} a^{5} + \frac{79956682730243191568186864693}{297945219436543339124782981805} a^{4} - \frac{25081815462991432853837842391}{59589043887308667824956596361} a^{3} - \frac{24030217239785851622530064749}{297945219436543339124782981805} a^{2} - \frac{85452440233356996838084880237}{297945219436543339124782981805} a + \frac{31359058920903344188337740836}{297945219436543339124782981805}$
Class group and class number
$C_{3}\times C_{9}\times C_{468}$, which has order $12636$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.78403136265631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-286}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\sqrt{13}, \sqrt{-22})\), 6.0.253025783296.4, 6.0.19463521792.6, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |