Normalized defining polynomial
\( x^{12} + 714 x^{10} + 197064 x^{8} + 26655048 x^{6} + 1835265600 x^{4} + 59903069184 x^{2} + 718836830208 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6401594233356076787154812928=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $207.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2856=2^{3}\cdot 3\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2856}(1,·)$, $\chi_{2856}(2435,·)$, $\chi_{2856}(1633,·)$, $\chi_{2856}(1801,·)$, $\chi_{2856}(395,·)$, $\chi_{2856}(2209,·)$, $\chi_{2856}(1067,·)$, $\chi_{2856}(1475,·)$, $\chi_{2856}(169,·)$, $\chi_{2856}(2041,·)$, $\chi_{2856}(251,·)$, $\chi_{2856}(803,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{612} a^{4}$, $\frac{1}{612} a^{5}$, $\frac{1}{25704} a^{6}$, $\frac{1}{51408} a^{7} - \frac{1}{1224} a^{5} - \frac{1}{2} a$, $\frac{1}{10487232} a^{8} - \frac{1}{102816} a^{6} - \frac{1}{1224} a^{4} + \frac{1}{24} a^{2}$, $\frac{1}{20974464} a^{9} - \frac{1}{205632} a^{7} - \frac{1}{2448} a^{5} - \frac{1}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{3272016384} a^{10} + \frac{1}{77905152} a^{8} - \frac{5}{891072} a^{6} + \frac{61}{127296} a^{4} - \frac{5}{312} a^{2} + \frac{1}{13}$, $\frac{1}{6544032768} a^{11} + \frac{1}{155810304} a^{9} - \frac{5}{1782144} a^{7} + \frac{61}{254592} a^{5} - \frac{5}{624} a^{3} + \frac{1}{26} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{134660}$, which has order $1077280$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1059.5454270327698 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.0.138664512.3, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $17$ | 17.12.9.1 | $x^{12} - 34 x^{8} - 10115 x^{4} - 397953$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |