Normalized defining polynomial
\( x^{12} + 663x^{10} + 145197x^{8} + 12578436x^{6} + 376744446x^{4} + 3398916573x^{2} + 1164012525 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(634606687020104055193909579776\) \(\medspace = 2^{12}\cdot 3^{6}\cdot 13^{11}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(304.47\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{1/2}13^{11/12}17^{3/4}\approx 304.4682798956266$ | ||
Ramified primes: | \(2\), \(3\), \(13\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{221}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(2652=2^{2}\cdot 3\cdot 13\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{2652}(1,·)$, $\chi_{2652}(1475,·)$, $\chi_{2652}(2245,·)$, $\chi_{2652}(1415,·)$, $\chi_{2652}(1225,·)$, $\chi_{2652}(1679,·)$, $\chi_{2652}(2209,·)$, $\chi_{2652}(1619,·)$, $\chi_{2652}(2231,·)$, $\chi_{2652}(985,·)$, $\chi_{2652}(2617,·)$, $\chi_{2652}(863,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.1554315984.1$^{2}$, 12.0.634606687020104055193909579776.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{3}a^{3}$, $\frac{1}{153}a^{4}$, $\frac{1}{765}a^{5}+\frac{2}{5}a$, $\frac{1}{2295}a^{6}+\frac{2}{15}a^{2}$, $\frac{1}{2295}a^{7}+\frac{2}{15}a^{3}$, $\frac{1}{4096575}a^{8}-\frac{1}{4725}a^{6}+\frac{4}{8925}a^{4}+\frac{71}{525}a^{2}+\frac{2}{7}$, $\frac{1}{4096575}a^{9}-\frac{1}{4725}a^{7}+\frac{4}{8925}a^{5}+\frac{71}{525}a^{3}+\frac{2}{7}a$, $\frac{1}{4226989465125}a^{10}-\frac{443}{31311033075}a^{8}+\frac{552044}{27627382125}a^{6}-\frac{276509}{1841825475}a^{4}-\frac{4466416}{180571125}a^{2}-\frac{594259}{2407615}$, $\frac{1}{4226989465125}a^{11}-\frac{443}{31311033075}a^{9}+\frac{552044}{27627382125}a^{7}-\frac{276509}{1841825475}a^{5}-\frac{4466416}{180571125}a^{3}-\frac{594259}{2407615}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{45860}$, which has order $366880$ (assuming GRH)
Relative class number: $183440$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{73}{27270899775}a^{10}+\frac{5314}{3030099975}a^{8}+\frac{66523}{178241175}a^{6}+\frac{1771754}{59413725}a^{4}+\frac{253838}{388325}a^{2}+\frac{24952}{15533}$, $\frac{4}{27270899775}a^{10}+\frac{16}{1010033325}a^{8}-\frac{463}{19804575}a^{6}-\frac{33333}{6601525}a^{4}-\frac{62231}{232995}a^{2}-\frac{42648}{15533}$, $\frac{568}{86265091125}a^{10}+\frac{59}{13531779}a^{8}+\frac{173969}{187941375}a^{6}+\frac{10166}{147405}a^{4}+\frac{3256942}{3685125}a^{2}+\frac{18338}{49135}$, $\frac{12764}{4226989465125}a^{10}+\frac{564104}{281799297675}a^{8}+\frac{12270421}{27627382125}a^{6}+\frac{24510596}{613941825}a^{4}+\frac{236184086}{180571125}a^{2}+\frac{29476479}{2407615}$, $\frac{718}{120771127575}a^{10}+\frac{122533}{40257042525}a^{8}+\frac{103337}{263117925}a^{6}+\frac{370228}{37588275}a^{4}+\frac{3111}{343945}a^{2}+\frac{551}{68789}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 15210.049367852565 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 15210.049367852565 \cdot 366880}{2\cdot\sqrt{634606687020104055193909579776}}\cr\approx \mathstrut & 0.215502123282075 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{221}) \), 3.3.169.1, 4.0.1554315984.1, 6.6.1824162509.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{6}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | R | R | ${\href{/padicField/19.12.0.1}{12} }$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.1.0.1}{1} }^{12}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(13\) | 13.12.11.4 | $x^{12} + 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |