Normalized defining polynomial
\( x^{12} - 3 x^{11} - 9 x^{10} - 25 x^{9} + 180 x^{8} - 1113 x^{7} + 6164 x^{6} - 10653 x^{5} + 30396 x^{4} - 21701 x^{3} + 15279 x^{2} - 4650 x + 2693 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(624485065329505575549=3^{16}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1019978} a^{10} - \frac{104135}{1019978} a^{9} - \frac{68631}{1019978} a^{8} - \frac{50471}{509989} a^{7} - \frac{93047}{1019978} a^{6} + \frac{18933}{1019978} a^{5} - \frac{142192}{509989} a^{4} - \frac{88383}{509989} a^{3} + \frac{219597}{1019978} a^{2} - \frac{206982}{509989} a + \frac{400647}{1019978}$, $\frac{1}{843295673386015306} a^{11} - \frac{303076462047}{843295673386015306} a^{10} - \frac{30339109758786863}{421647836693007653} a^{9} + \frac{16759358837734007}{421647836693007653} a^{8} - \frac{284773621234818319}{843295673386015306} a^{7} + \frac{269646296127401795}{843295673386015306} a^{6} - \frac{411246899404694563}{843295673386015306} a^{5} + \frac{181062450574640510}{421647836693007653} a^{4} - \frac{202829731626369164}{421647836693007653} a^{3} + \frac{319100888436735153}{843295673386015306} a^{2} - \frac{61016014029515689}{421647836693007653} a - \frac{57693434541314471}{421647836693007653}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7489.36668694 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 3.3.2349.1 x3, 4.0.24389.1, 6.6.160016229.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.16.30 | $x^{12} + 93 x^{11} + 351 x^{10} + 3 x^{9} + 126 x^{8} - 297 x^{7} + 171 x^{6} + 243 x^{5} - 324 x^{4} - 54 x^{3} + 162 x^{2} - 243 x + 324$ | $3$ | $4$ | $16$ | $C_3 : C_4$ | $[2]^{4}$ |
| $29$ | 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |