Properties

Label 12.0.61578162252...616.31
Degree $12$
Signature $[0, 6]$
Discriminant $2^{35}\cdot 13^{11}$
Root discriminant $79.27$
Ramified primes $2, 13$
Class number $120$ (GRH)
Class group $[2, 60]$ (GRH)
Galois group $C_2.S_3^2$ (as 12T39)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7514, 0, 260, 0, 5681, 0, 2288, 0, 754, 0, 52, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 52*x^10 + 754*x^8 + 2288*x^6 + 5681*x^4 + 260*x^2 + 7514)
 
gp: K = bnfinit(x^12 + 52*x^10 + 754*x^8 + 2288*x^6 + 5681*x^4 + 260*x^2 + 7514, 1)
 

Normalized defining polynomial

\( x^{12} + 52 x^{10} + 754 x^{8} + 2288 x^{6} + 5681 x^{4} + 260 x^{2} + 7514 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(61578162252603107311616=2^{35}\cdot 13^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $79.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} + \frac{2}{11} a^{6} - \frac{4}{11} a^{4} - \frac{5}{11} a^{2} + \frac{5}{11}$, $\frac{1}{11} a^{9} + \frac{2}{11} a^{7} - \frac{4}{11} a^{5} - \frac{5}{11} a^{3} + \frac{5}{11} a$, $\frac{1}{1784118985} a^{10} - \frac{39688754}{1784118985} a^{8} + \frac{606031978}{1784118985} a^{6} + \frac{25870560}{356823797} a^{4} - \frac{497725084}{1784118985} a^{2} - \frac{789031096}{1784118985}$, $\frac{1}{30330022745} a^{11} + \frac{1095659691}{30330022745} a^{9} + \frac{6444966838}{30330022745} a^{7} + \frac{901710789}{6066004549} a^{5} + \frac{4530246601}{30330022745} a^{3} + \frac{13808306054}{30330022745} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{60}$, which has order $120$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 175647.21313 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2.S_3^2$ (as 12T39):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 18 conjugacy class representatives for $C_2.S_3^2$
Character table for $C_2.S_3^2$

Intermediate fields

\(\Q(\sqrt{26}) \), 4.0.4499456.1, 6.2.760408064.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 24 sibling: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.12.0.1}{12} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.12.0.1}{12} }$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.10$x^{4} + 8 x + 6$$4$$1$$11$$C_4$$[3, 4]$
2.8.24.11$x^{8} + 8 x^{7} + 8 x^{5} + 2 x^{4} + 12 x^{2} + 8 x + 26$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
$13$13.12.11.9$x^{12} + 416$$12$$1$$11$$C_{12}$$[\ ]_{12}$