Normalized defining polynomial
\( x^{12} - x^{11} + 183 x^{10} - 183 x^{9} + 12923 x^{8} - 12923 x^{7} + 440987 x^{6} - 440987 x^{5} + 7432699 x^{4} - 7432699 x^{3} + 56374683 x^{2} - 56374683 x + 154258651 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61464734415837024654213=3^{6}\cdot 13^{11}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(741=3\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{741}(512,·)$, $\chi_{741}(1,·)$, $\chi_{741}(227,·)$, $\chi_{741}(683,·)$, $\chi_{741}(172,·)$, $\chi_{741}(685,·)$, $\chi_{741}(398,·)$, $\chi_{741}(400,·)$, $\chi_{741}(626,·)$, $\chi_{741}(628,·)$, $\chi_{741}(571,·)$, $\chi_{741}(284,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{21752431} a^{7} + \frac{539589}{21752431} a^{6} + \frac{98}{21752431} a^{5} + \frac{1820614}{21752431} a^{4} + \frac{2744}{21752431} a^{3} - \frac{5271968}{21752431} a^{2} + \frac{19208}{21752431} a + \frac{2933816}{21752431}$, $\frac{1}{21752431} a^{8} + \frac{112}{21752431} a^{6} - \frac{7554246}{21752431} a^{5} + \frac{3920}{21752431} a^{4} - \frac{6738876}{21752431} a^{3} + \frac{43904}{21752431} a^{2} - \frac{7334540}{21752431} a + \frac{76832}{21752431}$, $\frac{1}{21752431} a^{9} - \frac{2730921}{21752431} a^{6} - \frac{7056}{21752431} a^{5} + \frac{6876666}{21752431} a^{4} - \frac{263424}{21752431} a^{3} - \frac{4189761}{21752431} a^{2} - \frac{2074464}{21752431} a - \frac{2300927}{21752431}$, $\frac{1}{21752431} a^{10} - \frac{8820}{21752431} a^{6} - \frac{8274679}{21752431} a^{5} - \frac{411600}{21752431} a^{4} + \frac{6621199}{21752431} a^{3} - \frac{5186160}{21752431} a^{2} + \frac{8118500}{21752431} a - \frac{9680832}{21752431}$, $\frac{1}{21752431} a^{11} + \frac{8870343}{21752431} a^{6} + \frac{452760}{21752431} a^{5} - \frac{10609830}{21752431} a^{4} - \frac{2736511}{21752431} a^{3} - \frac{5694213}{21752431} a^{2} + \frac{7466711}{21752431} a - \frac{9135770}{21752431}$
Class group and class number
$C_{2}\times C_{38}\times C_{190}$, which has order $14440$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.7138053.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $19$ | 19.12.6.2 | $x^{12} - 2476099 x^{2} + 141137643$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |