Properties

Label 12.0.61274422532...0881.2
Degree $12$
Signature $[0, 6]$
Discriminant $7^{10}\cdot 167^{6}$
Root discriminant $65.40$
Ramified primes $7, 167$
Class number $2112$ (GRH)
Class group $[2, 2, 528]$ (GRH)
Galois group $C_2^2 \times A_4$ (as 12T25)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29958664, -1439524, 7495456, -561523, 877154, -67675, 61894, -4010, 2798, -130, 73, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 73*x^10 - 130*x^9 + 2798*x^8 - 4010*x^7 + 61894*x^6 - 67675*x^5 + 877154*x^4 - 561523*x^3 + 7495456*x^2 - 1439524*x + 29958664)
 
gp: K = bnfinit(x^12 - 2*x^11 + 73*x^10 - 130*x^9 + 2798*x^8 - 4010*x^7 + 61894*x^6 - 67675*x^5 + 877154*x^4 - 561523*x^3 + 7495456*x^2 - 1439524*x + 29958664, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} + 73 x^{10} - 130 x^{9} + 2798 x^{8} - 4010 x^{7} + 61894 x^{6} - 67675 x^{5} + 877154 x^{4} - 561523 x^{3} + 7495456 x^{2} - 1439524 x + 29958664 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6127442253232770770881=7^{10}\cdot 167^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 167$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{7} + \frac{1}{7}$, $\frac{1}{14} a^{8} + \frac{1}{14} a$, $\frac{1}{14} a^{9} + \frac{1}{14} a^{2}$, $\frac{1}{1148} a^{10} - \frac{23}{1148} a^{9} - \frac{3}{574} a^{8} - \frac{17}{574} a^{7} - \frac{1}{287} a^{6} - \frac{117}{574} a^{5} - \frac{120}{287} a^{4} - \frac{51}{1148} a^{3} + \frac{477}{1148} a^{2} - \frac{183}{574} a + \frac{134}{287}$, $\frac{1}{95709018482446737497894884} a^{11} + \frac{6383816838504620260649}{23927254620611684374473721} a^{10} + \frac{1653805568450617591352335}{95709018482446737497894884} a^{9} + \frac{1245946323486525421643843}{47854509241223368748947442} a^{8} + \frac{310165901806710791511555}{47854509241223368748947442} a^{7} + \frac{434072460682705342757205}{6836358463031909821278206} a^{6} + \frac{3320131706853305603926301}{6836358463031909821278206} a^{5} - \frac{309455133739425073947527}{2334366304449920426777924} a^{4} - \frac{2040146909015306819819909}{23927254620611684374473721} a^{3} - \frac{42405095708668860037014117}{95709018482446737497894884} a^{2} - \frac{4401527149162587822022070}{23927254620611684374473721} a - \frac{2860957219040949961911753}{23927254620611684374473721}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{528}$, which has order $2112$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 462.089090061 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times A_4$ (as 12T25):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 16 conjugacy class representatives for $C_2^2 \times A_4$
Character table for $C_2^2 \times A_4$

Intermediate fields

\(\Q(\sqrt{-167}) \), \(\Q(\zeta_{7})^+\), 6.0.11182568663.3, 6.6.2806769.1, 6.0.468730423.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: 12.0.219708209445758929.1, 12.0.6127442253232770770881.1, 12.0.7877952219361.1, 12.0.219708209445758929.2
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
$167$167.2.1.2$x^{2} + 334$$2$$1$$1$$C_2$$[\ ]_{2}$
167.2.1.2$x^{2} + 334$$2$$1$$1$$C_2$$[\ ]_{2}$
167.2.1.2$x^{2} + 334$$2$$1$$1$$C_2$$[\ ]_{2}$
167.2.1.2$x^{2} + 334$$2$$1$$1$$C_2$$[\ ]_{2}$
167.4.2.1$x^{4} + 1503 x^{2} + 697225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$