Normalized defining polynomial
\( x^{12} - 4 x^{11} + 105 x^{10} - 307 x^{9} + 4119 x^{8} - 8778 x^{7} + 77050 x^{6} - 110775 x^{5} + 723945 x^{4} - 592913 x^{3} + 3313884 x^{2} - 1140204 x + 6023704 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6127442253232770770881=7^{10}\cdot 167^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{52} a^{8} + \frac{5}{26} a^{7} + \frac{3}{26} a^{6} - \frac{3}{13} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{9}{52} a^{2} - \frac{6}{13} a - \frac{4}{13}$, $\frac{1}{52} a^{9} + \frac{5}{26} a^{7} + \frac{3}{26} a^{6} + \frac{3}{52} a^{5} - \frac{17}{52} a^{3} + \frac{4}{13} a^{2} - \frac{5}{26} a + \frac{1}{13}$, $\frac{1}{52} a^{10} + \frac{5}{26} a^{7} - \frac{5}{52} a^{6} - \frac{5}{26} a^{5} + \frac{9}{52} a^{4} - \frac{5}{26} a^{3} - \frac{11}{26} a^{2} - \frac{4}{13} a + \frac{1}{13}$, $\frac{1}{67441636950724935834988} a^{11} + \frac{6766758968145663458}{1296954556744710304519} a^{10} + \frac{77136268647996259296}{16860409237681233958747} a^{9} + \frac{29396502993660201424}{16860409237681233958747} a^{8} + \frac{884455960581667094499}{67441636950724935834988} a^{7} + \frac{95231013218500773483}{406274921389909252018} a^{6} - \frac{9559506988367992969237}{67441636950724935834988} a^{5} - \frac{3094618163537347549566}{16860409237681233958747} a^{4} - \frac{535926164584263127182}{1296954556744710304519} a^{3} - \frac{35249827705944618201}{411229493601981316067} a^{2} - \frac{3420062581770407062895}{16860409237681233958747} a - \frac{6348048305577789232066}{16860409237681233958747}$
Class group and class number
$C_{2}\times C_{2}\times C_{16}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31826.2424652 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times A_4$ (as 12T25):
| A solvable group of order 48 |
| The 16 conjugacy class representatives for $C_2^2 \times A_4$ |
| Character table for $C_2^2 \times A_4$ |
Intermediate fields
| \(\Q(\sqrt{1169}) \), \(\Q(\zeta_{7})^+\), 6.0.400967.1, 6.6.78277980641.1, 6.0.468730423.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.0.6127442253232770770881.2, 12.0.219708209445758929.1, 12.0.7877952219361.1, 12.0.219708209445758929.2 |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 167 | Data not computed | ||||||