Normalized defining polynomial
\( x^{12} + 858 x^{10} + 283140 x^{8} + 44849376 x^{6} + 3453401952 x^{4} + 113962264416 x^{2} + 1074501350208 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(606736939537977599814008832=2^{18}\cdot 3^{6}\cdot 11^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3432=2^{3}\cdot 3\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3432}(1,·)$, $\chi_{3432}(2309,·)$, $\chi_{3432}(197,·)$, $\chi_{3432}(3169,·)$, $\chi_{3432}(461,·)$, $\chi_{3432}(3101,·)$, $\chi_{3432}(529,·)$, $\chi_{3432}(1585,·)$, $\chi_{3432}(1849,·)$, $\chi_{3432}(1057,·)$, $\chi_{3432}(3365,·)$, $\chi_{3432}(1253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{66} a^{2}$, $\frac{1}{66} a^{3}$, $\frac{1}{4356} a^{4}$, $\frac{1}{4356} a^{5}$, $\frac{1}{287496} a^{6}$, $\frac{1}{287496} a^{7}$, $\frac{1}{18974736} a^{8}$, $\frac{1}{18974736} a^{9}$, $\frac{1}{1252332576} a^{10}$, $\frac{1}{1252332576} a^{11}$
Class group and class number
$C_{2}\times C_{2}\times C_{18}\times C_{14274}$, which has order $1027728$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{4356} a^{4} + \frac{2}{33} a^{2} + 2 \), \( \frac{1}{18974736} a^{8} + \frac{1}{35937} a^{6} + \frac{5}{1089} a^{4} + \frac{8}{33} a^{2} + 2 \), \( \frac{1}{18974736} a^{8} + \frac{1}{35937} a^{6} + \frac{5}{1089} a^{4} + \frac{17}{66} a^{2} + 4 \), \( \frac{1}{66} a^{2} + 2 \), \( \frac{1}{18974736} a^{8} + \frac{1}{35937} a^{6} + \frac{5}{1089} a^{4} + \frac{8}{33} a^{2} + 3 \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.78403136265631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.153122112.5, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.28 | $x^{12} - 52 x^{10} + 1100 x^{8} - 12000 x^{6} - 61072 x^{4} + 62144 x^{2} - 62144$ | $2$ | $6$ | $18$ | $C_{12}$ | $[3]^{6}$ |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.12.6.2 | $x^{12} + 14641 x^{4} - 322102 x^{2} + 14172488$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |