Normalized defining polynomial
\( x^{12} - x^{11} + 408 x^{10} - 409 x^{9} + 61794 x^{8} - 62203 x^{7} + 4441807 x^{6} - 4781629 x^{5} + 160998290 x^{4} - 185075146 x^{3} + 2829532400 x^{2} - 2683767652 x + 19664734321 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5946995183757601408203125=5^{9}\cdot 7^{10}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1645=5\cdot 7\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1645}(1,·)$, $\chi_{1645}(1411,·)$, $\chi_{1645}(657,·)$, $\chi_{1645}(328,·)$, $\chi_{1645}(1129,·)$, $\chi_{1645}(424,·)$, $\chi_{1645}(659,·)$, $\chi_{1645}(563,·)$, $\chi_{1645}(471,·)$, $\chi_{1645}(187,·)$, $\chi_{1645}(892,·)$, $\chi_{1645}(1503,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{655906439} a^{10} + \frac{79277244}{655906439} a^{9} - \frac{306382675}{655906439} a^{8} + \frac{137289585}{655906439} a^{7} - \frac{314392683}{655906439} a^{6} - \frac{70168565}{655906439} a^{5} + \frac{123136476}{655906439} a^{4} + \frac{109001415}{655906439} a^{3} - \frac{188909951}{655906439} a^{2} - \frac{37119783}{655906439} a - \frac{235917496}{655906439}$, $\frac{1}{95602051886011396697014938633903726829} a^{11} + \frac{46662086807887325085150436027}{95602051886011396697014938633903726829} a^{10} - \frac{517714837474531354083488088801245869}{95602051886011396697014938633903726829} a^{9} + \frac{11129672868465445749202495832977685787}{95602051886011396697014938633903726829} a^{8} + \frac{46326298376612809401159884983462722497}{95602051886011396697014938633903726829} a^{7} + \frac{19051895660193240698179151601734694973}{95602051886011396697014938633903726829} a^{6} + \frac{31347884529124285522917752564564854610}{95602051886011396697014938633903726829} a^{5} - \frac{22014287106930711695587889380971616257}{95602051886011396697014938633903726829} a^{4} + \frac{848246972833103150971365059521608516}{95602051886011396697014938633903726829} a^{3} - \frac{1492831661335950352953301053913927799}{95602051886011396697014938633903726829} a^{2} + \frac{748082961534589547092984143767588787}{95602051886011396697014938633903726829} a + \frac{1870152762751794710289541216}{4861598958085989424083353149}$
Class group and class number
$C_{2}\times C_{93314}$, which has order $186628$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.13530125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $47$ | 47.12.6.2 | $x^{12} - 229345007 x^{2} + 53896076645$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |