Normalized defining polynomial
\( x^{12} - 5 x^{11} + 14 x^{10} - 31 x^{9} + 53 x^{8} - 72 x^{7} + 81 x^{6} - 72 x^{5} + 53 x^{4} - 31 x^{3} + 14 x^{2} - 5 x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(59182215273\)\(\medspace = 3^{6}\cdot 433^{3}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $7.90$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 433$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $6$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( 3 a^{11} - 12 a^{10} + 29 a^{9} - 61 a^{8} + 93 a^{7} - 114 a^{6} + 120 a^{5} - 91 a^{4} + 64 a^{3} - 30 a^{2} + 11 a - 3 \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 4.35580546019 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_3\wr C_2$ (as 12T35):
A solvable group of order 72 |
The 9 conjugacy class representatives for $S_3\wr C_2$ |
Character table for $S_3\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.3897.1, 6.0.11691.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 6 siblings: | 6.0.11691.1, 6.4.243548211.1 |
Degree 9 sibling: | 9.3.2191933899.1 |
Degree 12 siblings: | Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 |
Degree 18 siblings: | 18.0.129723503874804239427.1, Deg 18, Deg 18 |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
433 | Data not computed |