Properties

Label 12.0.57821561862...872.44
Degree $12$
Signature $[0, 6]$
Discriminant $2^{37}\cdot 29^{10}$
Root discriminant $140.23$
Ramified primes $2, 29$
Class number $16$ (GRH)
Class group $[2, 2, 4]$ (GRH)
Galois group $A_4:C_4$ (as 12T27)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9213, 49556, 87266, 68732, 57389, 21040, 17700, 880, 1085, -124, 6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 6*x^10 - 124*x^9 + 1085*x^8 + 880*x^7 + 17700*x^6 + 21040*x^5 + 57389*x^4 + 68732*x^3 + 87266*x^2 + 49556*x + 9213)
 
gp: K = bnfinit(x^12 - 4*x^11 + 6*x^10 - 124*x^9 + 1085*x^8 + 880*x^7 + 17700*x^6 + 21040*x^5 + 57389*x^4 + 68732*x^3 + 87266*x^2 + 49556*x + 9213, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 6 x^{10} - 124 x^{9} + 1085 x^{8} + 880 x^{7} + 17700 x^{6} + 21040 x^{5} + 57389 x^{4} + 68732 x^{3} + 87266 x^{2} + 49556 x + 9213 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(57821561862880174247247872=2^{37}\cdot 29^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $140.23$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{78985486793887795287397046} a^{11} - \frac{4757909304791681083448703}{78985486793887795287397046} a^{10} - \frac{8277777753124519657227440}{39492743396943897643698523} a^{9} + \frac{321105725524644139899480}{39492743396943897643698523} a^{8} - \frac{1145079292800553268754612}{39492743396943897643698523} a^{7} + \frac{15976113100522762929357003}{39492743396943897643698523} a^{6} + \frac{11441648215726476339554543}{39492743396943897643698523} a^{5} - \frac{13986606032861583048022640}{39492743396943897643698523} a^{4} - \frac{33021752949061062522032109}{78985486793887795287397046} a^{3} + \frac{5824323467438857268204019}{78985486793887795287397046} a^{2} - \frac{3190556719915993865152825}{39492743396943897643698523} a + \frac{1390067027413607605409760}{39492743396943897643698523}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40932140.2596 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_4:C_4$ (as 12T27):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $A_4:C_4$
Character table for $A_4:C_4$

Intermediate fields

3.3.6728.1, 6.2.5794045952.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.6$x^{4} + 18$$4$$1$$11$$D_{4}$$[2, 3, 4]$
2.8.26.2$x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{4} + 8 x^{3} + 30$$8$$1$$26$$C_2^2:C_4$$[2, 3, 7/2, 4]$
$29$29.12.10.3$x^{12} + 232 x^{6} + 22707$$6$$2$$10$$C_3 : C_4$$[\ ]_{6}^{2}$