Properties

Label 12.0.5777058287065429.1
Degree $12$
Signature $[0, 6]$
Discriminant $7^{8}\cdot 13^{2}\cdot 181^{3}$
Root discriminant $20.58$
Ramified primes $7, 13, 181$
Class number $4$
Class group $[2, 2]$
Galois group $C_4\times C_4^2:C_3$ (as 12T94)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![83, -107, 343, -218, 342, -208, 168, -93, 54, -22, 9, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 9*x^10 - 22*x^9 + 54*x^8 - 93*x^7 + 168*x^6 - 208*x^5 + 342*x^4 - 218*x^3 + 343*x^2 - 107*x + 83)
 
gp: K = bnfinit(x^12 - 3*x^11 + 9*x^10 - 22*x^9 + 54*x^8 - 93*x^7 + 168*x^6 - 208*x^5 + 342*x^4 - 218*x^3 + 343*x^2 - 107*x + 83, 1)
 

Normalized defining polynomial

\( x^{12} - 3 x^{11} + 9 x^{10} - 22 x^{9} + 54 x^{8} - 93 x^{7} + 168 x^{6} - 208 x^{5} + 342 x^{4} - 218 x^{3} + 343 x^{2} - 107 x + 83 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5777058287065429=7^{8}\cdot 13^{2}\cdot 181^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.58$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{8215264221} a^{11} + \frac{285490460}{8215264221} a^{10} + \frac{703422607}{8215264221} a^{9} - \frac{419220423}{2738421407} a^{8} - \frac{3636996742}{8215264221} a^{7} + \frac{1879727599}{8215264221} a^{6} + \frac{2654187296}{8215264221} a^{5} + \frac{996389404}{8215264221} a^{4} + \frac{289356893}{2738421407} a^{3} + \frac{497410123}{8215264221} a^{2} + \frac{3898683110}{8215264221} a + \frac{8587642}{32993029}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 134.014195652 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\times C_4^2:C_3$ (as 12T94):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 192
The 32 conjugacy class representatives for $C_4\times C_4^2:C_3$
Character table for $C_4\times C_4^2:C_3$ is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 6.6.434581.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.12.0.1}{12} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.12.0.1}{12} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.12.0.1}{12} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.12.8.1$x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
181Data not computed