Normalized defining polynomial
\( x^{12} - x^{11} + 50 x^{10} - 36 x^{9} + 1184 x^{8} - 680 x^{7} + 12769 x^{6} - 1666 x^{5} + 71134 x^{4} - 119413 x^{3} + 143129 x^{2} - 513709 x + 435799 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5700120876856238765625=3^{6}\cdot 5^{6}\cdot 7^{10}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1155=3\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1155}(1,·)$, $\chi_{1155}(131,·)$, $\chi_{1155}(584,·)$, $\chi_{1155}(331,·)$, $\chi_{1155}(461,·)$, $\chi_{1155}(109,·)$, $\chi_{1155}(274,·)$, $\chi_{1155}(419,·)$, $\chi_{1155}(626,·)$, $\chi_{1155}(89,·)$, $\chi_{1155}(604,·)$, $\chi_{1155}(991,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{26} a^{8} - \frac{2}{13} a^{7} - \frac{1}{13} a^{5} + \frac{6}{13} a^{4} + \frac{2}{13} a^{3} - \frac{11}{26} a$, $\frac{1}{104} a^{9} - \frac{1}{52} a^{8} + \frac{9}{52} a^{7} + \frac{11}{104} a^{6} + \frac{47}{104} a^{5} - \frac{11}{104} a^{4} + \frac{21}{104} a^{3} + \frac{1}{52} a^{2} + \frac{43}{104} a + \frac{1}{8}$, $\frac{1}{4413032} a^{10} + \frac{1251}{551629} a^{9} + \frac{37693}{2206516} a^{8} + \frac{254055}{4413032} a^{7} - \frac{1041435}{4413032} a^{6} - \frac{26805}{4413032} a^{5} - \frac{1386865}{4413032} a^{4} - \frac{90843}{1103258} a^{3} - \frac{947449}{4413032} a^{2} + \frac{583207}{4413032} a + \frac{10053}{169732}$, $\frac{1}{8129875494976614184} a^{11} + \frac{48025097641}{625375038075124168} a^{10} - \frac{7137953208077543}{2032468873744153546} a^{9} + \frac{141028838812504137}{8129875494976614184} a^{8} - \frac{239439881827951704}{1016234436872076773} a^{7} + \frac{823960129561861421}{4064937747488307092} a^{6} + \frac{882952521869013333}{2032468873744153546} a^{5} - \frac{403936328149716727}{8129875494976614184} a^{4} - \frac{3396644450456506083}{8129875494976614184} a^{3} - \frac{784027779737925397}{4064937747488307092} a^{2} - \frac{3477567521119493073}{8129875494976614184} a + \frac{10502476858261317}{78171879759390521}$
Class group and class number
$C_{3}\times C_{12}\times C_{36}$, which has order $1296$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1378.5816793295 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-55}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-55}, \sqrt{105})\), 6.0.603993159.1, 6.6.56723625.1, 6.0.399466375.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | R | R | R | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |