Normalized defining polynomial
\( x^{12} - 4 x^{11} + 475 x^{10} - 1566 x^{9} + 77422 x^{8} - 202300 x^{7} + 4485909 x^{6} - 8624434 x^{5} + 27197377 x^{4} - 28351612 x^{3} + 150014294 x^{2} - 117500690 x + 370936189 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56800822275313340415461609472=2^{12}\cdot 3^{6}\cdot 7^{8}\cdot 53^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $249.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4452=2^{2}\cdot 3\cdot 7\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4452}(1,·)$, $\chi_{4452}(3203,·)$, $\chi_{4452}(2437,·)$, $\chi_{4452}(529,·)$, $\chi_{4452}(1801,·)$, $\chi_{4452}(1355,·)$, $\chi_{4452}(2545,·)$, $\chi_{4452}(2627,·)$, $\chi_{4452}(659,·)$, $\chi_{4452}(23,·)$, $\chi_{4452}(3817,·)$, $\chi_{4452}(3263,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{21} a^{6} - \frac{2}{21} a^{5} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{4}{21} a^{2} - \frac{4}{21} a - \frac{8}{21}$, $\frac{1}{21} a^{7} - \frac{10}{21} a^{5} - \frac{3}{7} a^{4} + \frac{2}{21} a^{3} + \frac{3}{7} a^{2} + \frac{5}{21} a + \frac{5}{21}$, $\frac{1}{147} a^{8} + \frac{2}{147} a^{7} + \frac{1}{49} a^{6} + \frac{50}{147} a^{5} - \frac{10}{147} a^{4} + \frac{31}{147} a^{3} + \frac{34}{147} a^{2} + \frac{26}{147} a + \frac{32}{147}$, $\frac{1}{1911} a^{9} - \frac{5}{1911} a^{8} - \frac{32}{1911} a^{7} + \frac{8}{1911} a^{6} - \frac{183}{637} a^{5} - \frac{319}{1911} a^{4} - \frac{47}{637} a^{3} + \frac{565}{1911} a^{2} - \frac{57}{637} a - \frac{5}{21}$, $\frac{1}{46127237415987} a^{10} - \frac{2664721970}{15375745805329} a^{9} + \frac{130731406322}{46127237415987} a^{8} + \frac{313504763269}{46127237415987} a^{7} + \frac{55064626075}{3548249031999} a^{6} + \frac{1039172509141}{3548249031999} a^{5} - \frac{17788245427588}{46127237415987} a^{4} - \frac{17504920172}{941372192163} a^{3} + \frac{3503711293573}{46127237415987} a^{2} - \frac{1694074947809}{15375745805329} a + \frac{928209367201}{3548249031999}$, $\frac{1}{4029622490401410433912563} a^{11} + \frac{1106824055}{309970960800108494916351} a^{10} - \frac{805290899196193662284}{4029622490401410433912563} a^{9} - \frac{2699580563835204080828}{4029622490401410433912563} a^{8} + \frac{10358655120243250359198}{1343207496800470144637521} a^{7} + \frac{93145234063429885435744}{4029622490401410433912563} a^{6} + \frac{481506839752949360453340}{1343207496800470144637521} a^{5} - \frac{91928609501645823800389}{191886785257210020662503} a^{4} - \frac{146096287747755817094821}{309970960800108494916351} a^{3} - \frac{76933612050054760560410}{575660355771630061987509} a^{2} - \frac{383430821618025874533082}{1343207496800470144637521} a + \frac{23103323500239463311590}{103323653600036164972117}$
Class group and class number
$C_{3}\times C_{6}\times C_{250926}$, which has order $4516668$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2414.7845504215825 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\zeta_{7})^+\), 4.0.21438288.1, 6.6.357453677.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $53$ | 53.12.9.1 | $x^{12} - 106 x^{8} - 716295 x^{4} - 609800192$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |