Properties

Label 12.0.56466838261...0000.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{18}\cdot 5^{6}\cdot 13^{10}$
Root discriminant $53.62$
Ramified primes $2, 5, 13$
Class number $1008$ (GRH)
Class group $[2, 2, 252]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![84475, -36550, 56065, -43170, 32704, -15542, 8985, -3542, 1244, -250, 61, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 61*x^10 - 250*x^9 + 1244*x^8 - 3542*x^7 + 8985*x^6 - 15542*x^5 + 32704*x^4 - 43170*x^3 + 56065*x^2 - 36550*x + 84475)
 
gp: K = bnfinit(x^12 - 6*x^11 + 61*x^10 - 250*x^9 + 1244*x^8 - 3542*x^7 + 8985*x^6 - 15542*x^5 + 32704*x^4 - 43170*x^3 + 56065*x^2 - 36550*x + 84475, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{11} + 61 x^{10} - 250 x^{9} + 1244 x^{8} - 3542 x^{7} + 8985 x^{6} - 15542 x^{5} + 32704 x^{4} - 43170 x^{3} + 56065 x^{2} - 36550 x + 84475 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(564668382613504000000=2^{18}\cdot 5^{6}\cdot 13^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(520=2^{3}\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{520}(1,·)$, $\chi_{520}(259,·)$, $\chi_{520}(51,·)$, $\chi_{520}(289,·)$, $\chi_{520}(9,·)$, $\chi_{520}(209,·)$, $\chi_{520}(491,·)$, $\chi_{520}(321,·)$, $\chi_{520}(81,·)$, $\chi_{520}(179,·)$, $\chi_{520}(251,·)$, $\chi_{520}(459,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{20} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5} + \frac{3}{20} a^{4} + \frac{3}{10} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{20} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{4} a^{5} - \frac{1}{10} a^{4} - \frac{1}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{572998900} a^{10} - \frac{1}{114599780} a^{9} - \frac{2008717}{286499450} a^{8} + \frac{8034883}{286499450} a^{7} + \frac{19825173}{114599780} a^{6} - \frac{67122347}{572998900} a^{5} - \frac{40348911}{286499450} a^{4} - \frac{44992487}{286499450} a^{3} - \frac{17743131}{114599780} a^{2} - \frac{14231369}{114599780} a - \frac{3669549}{11459978}$, $\frac{1}{10142653528900} a^{11} + \frac{1769}{2028530705780} a^{10} + \frac{97033302031}{10142653528900} a^{9} - \frac{7052903859}{327182371900} a^{8} - \frac{402855880993}{2028530705780} a^{7} + \frac{2348657958103}{10142653528900} a^{6} - \frac{145254780457}{10142653528900} a^{5} + \frac{1834232847911}{10142653528900} a^{4} - \frac{390209703811}{2028530705780} a^{3} - \frac{368546294687}{2028530705780} a^{2} + \frac{55005793805}{405706141156} a - \frac{3397749993}{13087294876}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{252}$, which has order $1008$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 615.5445050404002 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-26}) \), \(\Q(\sqrt{-130}) \), \(\Q(\sqrt{5}) \), 3.3.169.1, \(\Q(\sqrt{5}, \sqrt{-26})\), 6.0.190102016.1, 6.0.23762752000.2, 6.6.3570125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.18.15$x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
$13$13.12.10.1$x^{12} - 117 x^{6} + 10816$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$