Properties

Label 12.0.56192894500864.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{18}\cdot 11^{8}$
Root discriminant $13.99$
Ramified primes $2, 11$
Class number $2$
Class group $[2]$
Galois group $C_2 \times S_4$ (as 12T23)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 32, 30, 7, 26, 18, -14, -5, -6, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^9 - 5*x^8 - 14*x^7 + 18*x^6 + 26*x^5 + 7*x^4 + 30*x^3 + 32*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^12 - 6*x^9 - 5*x^8 - 14*x^7 + 18*x^6 + 26*x^5 + 7*x^4 + 30*x^3 + 32*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{9} - 5 x^{8} - 14 x^{7} + 18 x^{6} + 26 x^{5} + 7 x^{4} + 30 x^{3} + 32 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(56192894500864=2^{18}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1387} a^{10} - \frac{269}{1387} a^{9} - \frac{575}{1387} a^{8} - \frac{6}{1387} a^{7} - \frac{297}{1387} a^{6} + \frac{144}{1387} a^{5} - \frac{56}{1387} a^{4} - \frac{587}{1387} a^{3} - \frac{507}{1387} a^{2} + \frac{3}{1387} a + \frac{357}{1387}$, $\frac{1}{40223} a^{11} - \frac{11}{40223} a^{10} + \frac{478}{2117} a^{9} - \frac{16591}{40223} a^{8} + \frac{17573}{40223} a^{7} - \frac{5745}{40223} a^{6} + \frac{16291}{40223} a^{5} - \frac{15035}{40223} a^{4} - \frac{14640}{40223} a^{3} + \frac{9284}{40223} a^{2} - \frac{19674}{40223} a + \frac{1951}{40223}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{111}{551} a^{11} - \frac{3}{551} a^{10} - \frac{25}{551} a^{9} - \frac{739}{551} a^{8} - \frac{633}{551} a^{7} - \frac{1580}{551} a^{6} + \frac{2297}{551} a^{5} + \frac{3516}{551} a^{4} + \frac{1744}{551} a^{3} + \frac{3605}{551} a^{2} + \frac{4004}{551} a - \frac{446}{551} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 122.749535419 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_4$ (as 12T23):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $C_2 \times S_4$
Character table for $C_2 \times S_4$

Intermediate fields

\(\Q(\sqrt{-1}) \), 3.1.44.1, 6.0.30976.1, 6.0.3748096.1, 6.2.937024.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: data not computed
Degree 8 siblings: data not computed
Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.18.70$x^{12} + 2 x^{11} + 2 x^{7} + 2 x^{6} + 2 x^{4} + 2 x^{2} + 2$$12$$1$$18$$C_2 \times S_4$$[4/3, 4/3, 2]_{3}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$