Normalized defining polynomial
\( x^{12} - x^{11} + 323 x^{10} - 101 x^{9} + 42703 x^{8} + 8448 x^{7} + 2950734 x^{6} + 1390204 x^{5} + 112725316 x^{4} + 52702688 x^{3} + 2278832068 x^{2} + 640091877 x + 19212337691 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5595699693580593283203125=5^{9}\cdot 7^{8}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3115=5\cdot 7\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3115}(2671,·)$, $\chi_{3115}(1,·)$, $\chi_{3115}(2402,·)$, $\chi_{3115}(1957,·)$, $\chi_{3115}(1514,·)$, $\chi_{3115}(1423,·)$, $\chi_{3115}(624,·)$, $\chi_{3115}(177,·)$, $\chi_{3115}(179,·)$, $\chi_{3115}(533,·)$, $\chi_{3115}(88,·)$, $\chi_{3115}(891,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{29} a^{8} + \frac{2}{29} a^{7} - \frac{9}{29} a^{6} + \frac{14}{29} a^{5} + \frac{4}{29} a^{4} + \frac{12}{29} a^{3} + \frac{6}{29} a^{2} - \frac{8}{29} a + \frac{1}{29}$, $\frac{1}{551} a^{9} + \frac{9}{551} a^{8} - \frac{169}{551} a^{7} + \frac{125}{551} a^{6} + \frac{15}{551} a^{5} + \frac{69}{551} a^{4} - \frac{258}{551} a^{3} - \frac{111}{551} a^{2} + \frac{61}{551} a + \frac{268}{551}$, $\frac{1}{551} a^{10} - \frac{3}{551} a^{8} - \frac{64}{551} a^{7} - \frac{27}{551} a^{6} + \frac{86}{551} a^{5} + \frac{109}{551} a^{4} + \frac{216}{551} a^{3} - \frac{213}{551} a^{2} - \frac{53}{551} a + \frac{39}{551}$, $\frac{1}{3201689199815754388060198533280005949} a^{11} + \frac{2530582730493434434254023836005315}{3201689199815754388060198533280005949} a^{10} + \frac{956869627632898417152365281037424}{3201689199815754388060198533280005949} a^{9} - \frac{1550528750238755678479044553973131}{3201689199815754388060198533280005949} a^{8} + \frac{11317990435061698413762532589072809}{110403075855715668553799949423448481} a^{7} - \frac{702184085483228386118994492213854466}{3201689199815754388060198533280005949} a^{6} - \frac{1542575330166452602065292613710756848}{3201689199815754388060198533280005949} a^{5} - \frac{618686005057921822653655951504861865}{3201689199815754388060198533280005949} a^{4} - \frac{1015326901720457780501635236180588250}{3201689199815754388060198533280005949} a^{3} - \frac{321604267088359633237643542110260387}{3201689199815754388060198533280005949} a^{2} - \frac{22710943409189125059358396976089115}{3201689199815754388060198533280005949} a - \frac{198812161080236419205845408510438508}{3201689199815754388060198533280005949}$
Class group and class number
$C_{2}\times C_{77890}$, which has order $155780$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.990125.2, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $89$ | 89.6.3.2 | $x^{6} - 7921 x^{2} + 4934783$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 89.6.3.2 | $x^{6} - 7921 x^{2} + 4934783$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |