Properties

Label 12.0.53981860730...000.12
Degree $12$
Signature $[0, 6]$
Discriminant $2^{24}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10}$
Root discriminant $78.41$
Ramified primes $2, 3, 5, 7$
Class number $10400$ (GRH)
Class group $[2, 2, 10, 260]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15816529, 0, 5025864, 0, 865846, 0, 79976, 0, 3973, 0, 100, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 100*x^10 + 3973*x^8 + 79976*x^6 + 865846*x^4 + 5025864*x^2 + 15816529)
 
gp: K = bnfinit(x^12 + 100*x^10 + 3973*x^8 + 79976*x^6 + 865846*x^4 + 5025864*x^2 + 15816529, 1)
 

Normalized defining polynomial

\( x^{12} + 100 x^{10} + 3973 x^{8} + 79976 x^{6} + 865846 x^{4} + 5025864 x^{2} + 15816529 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(53981860730241024000000=2^{24}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $78.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(839,·)$, $\chi_{840}(361,·)$, $\chi_{840}(299,·)$, $\chi_{840}(781,·)$, $\chi_{840}(719,·)$, $\chi_{840}(121,·)$, $\chi_{840}(59,·)$, $\chi_{840}(541,·)$, $\chi_{840}(479,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3977} a^{7} + \frac{49}{3977} a^{5} + \frac{686}{3977} a^{3} - \frac{1576}{3977} a$, $\frac{1}{4291183} a^{8} - \frac{1658360}{4291183} a^{6} - \frac{76428}{330091} a^{4} - \frac{1854858}{4291183} a^{2} - \frac{127}{1079}$, $\frac{1}{4291183} a^{9} + \frac{63}{4291183} a^{7} - \frac{97178}{330091} a^{5} - \frac{1340175}{4291183} a^{3} - \frac{849280}{4291183} a$, $\frac{1}{4291183} a^{10} + \frac{224974}{4291183} a^{6} + \frac{1177795}{4291183} a^{4} + \frac{11141}{330091} a^{2} + \frac{448}{1079}$, $\frac{1}{4291183} a^{11} - \frac{537}{4291183} a^{7} - \frac{1289878}{4291183} a^{5} - \frac{5625}{330091} a^{3} + \frac{1018843}{4291183} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{10}\times C_{260}$, which has order $10400$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 279.1500271937239 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-105})\), 6.0.29042496000.9, 6.0.3630312000.2, 6.6.1229312.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.24.79$x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
$3$3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$5$5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$